CONTINUOUS DEPENDENCE IN FRONT PROPAGATION OF CONVECTIVE REACTION-DIFFUSION EQUATIONS

被引:15
|
作者
Malaguti, Luisa [1 ]
Marcelli, Cristina [2 ]
Matucci, Serena [3 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Engn Sci & Methods, I-42122 Reggio Emilia, Italy
[2] Polytech Univ Marche, Dept Math Sci, I-60131 Ancona, Italy
[3] Univ Florence, Dept Elect & Telecommun, I-50139 Florence, Italy
关键词
Reaction-diffusion-convection equations; travelling wave solutions; threshold wave speed; continuous dependence; FISHER-KPP EQUATIONS; TRAVELING-WAVES; DEGENERATE; SPEED; TERMS;
D O I
10.3934/cpaa.2010.9.1083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuous dependence of the threshold wave speed and of the travelling wave profiles for reaction-diffusion-convection equations u(t) + h(u) u(x) = (d(u)u(x) )(x) + f(u) is here studied with respect to the diffusion, reaction and convection terms.
引用
收藏
页码:1083 / 1098
页数:16
相关论文
共 50 条
  • [1] Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements
    Malaguti, Luisa
    Marcelli, Cristina
    Matucci, Serena
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [2] Solvability of a Doubly Singular Boundary Value Problem Arising in Front Propagation for Reaction-Diffusion Equations
    Marcelli, Cristina
    CONTEMPORARY MATHEMATICS, 2025, 6 (01): : 135 - 145
  • [3] A General Approach for Front-Propagation in Functional Reaction-Diffusion Equations
    Calamai, Alessandro
    Marcelli, Cristina
    Papalini, Francesca
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (04) : 567 - 593
  • [4] A General Approach for Front-Propagation in Functional Reaction-Diffusion Equations
    Alessandro Calamai
    Cristina Marcelli
    Francesca Papalini
    Journal of Dynamics and Differential Equations, 2009, 21 : 567 - 593
  • [5] Effect of noise on front propagation in reaction-diffusion equations of KPP type
    Mueller, Carl
    Mytnik, Leonid
    Quastel, Jeremy
    INVENTIONES MATHEMATICAE, 2011, 184 (02) : 405 - 453
  • [6] Front propagation and blocking of reaction-diffusion systems in cylinders
    Guo, Hongjun
    Forbey, Jennifer
    Liu, Rongsong
    NONLINEARITY, 2021, 34 (10) : 6750 - 6772
  • [7] FASTNESS AND CONTINUOUS DEPENDENCE IN FRONT PROPAGATION IN FISHER-KPP EQUATIONS
    Arias, Margarita
    Campos, Juan
    Marcelli, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01): : 11 - 30
  • [8] PROPAGATION PROPERTIES OF REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS
    Ducasse, Romain
    ANALYSIS & PDE, 2020, 13 (08): : 2259 - 2288
  • [9] LINEAR AND NONLINEAR FRONT SELECTION FOR REACTION-DIFFUSION EQUATIONS
    Goriely, A.
    Rose, J.
    BIOMAT 2008, 2009, : 29 - 51
  • [10] A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off
    Dumortier, Freddy
    Popovic, Nikola
    Kaper, Tasso J.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (20-22) : 1984 - 1999