Maximal monotonicity of bifunctions

被引:54
作者
Hadjisavvas, N. [1 ]
Khatibzadeh, H. [2 ]
机构
[1] Univ Aegean, Dept Product & Syst Design Engn, Syros, Greece
[2] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
equilibrium problem; monotone bifunctions; maximal monotone operators; cyclic monotonicity;
D O I
10.1080/02331930801951116
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For each monotone bifunction F defined on a subset C of a Banach space, an associated monotone operator AF can be defined. The bifunction F is called maximal monotone, if AF is maximal monotone. We find conditions for a bifunction to be maximal monotone and show the relation to the existence of solutions of an equilibrium problem. Also, we establish some properties of the domain C when F is maximal monotone. Finally, we define and study cyclically monotone bifunctions.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 11 条