Maximal monotonicity of bifunctions

被引:55
作者
Hadjisavvas, N. [1 ]
Khatibzadeh, H. [2 ]
机构
[1] Univ Aegean, Dept Product & Syst Design Engn, Syros, Greece
[2] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
equilibrium problem; monotone bifunctions; maximal monotone operators; cyclic monotonicity;
D O I
10.1080/02331930801951116
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For each monotone bifunction F defined on a subset C of a Banach space, an associated monotone operator AF can be defined. The bifunction F is called maximal monotone, if AF is maximal monotone. We find conditions for a bifunction to be maximal monotone and show the relation to the existence of solutions of an equilibrium problem. Also, we establish some properties of the domain C when F is maximal monotone. Finally, we define and study cyclically monotone bifunctions.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 11 条
[1]  
Ait Mansour M., 2003, COMMUN APPL ANAL, V7, P369
[2]  
Blum E., 1994, Math. Stud., V63, P127
[3]   Maximality of sums of two maximal monotone operators [J].
Borwein, Jonathan M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2951-2955
[4]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[5]   Iterative algorithms for equilibrium problems [J].
Iusem, AN ;
Sosa, W .
OPTIMIZATION, 2003, 52 (03) :301-316
[6]   Partial proximal point method for nonmonotone equilibrium problems [J].
Konnov, IV .
OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (03) :373-384
[7]  
MOUDAFI A, 1999, LECT NOTES EC MATH S, V477
[8]  
Papageorgiou N.S., 1997, HDB MULTIVALUED ANAL, V1
[9]  
PHELPS RR, 1993, MATHFA9302209 ARXIV
[10]   CHARACTERIZATION OF SUBDIFFERENTIALS OF CONVEX FUNCTIONS [J].
ROCKAFEL.RT .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 17 (03) :497-&