Time-Series Big Data Stream Evaluation

被引:0
作者
Mursanto, Petrus [1 ]
Wibisono, Ari [1 ]
Bayu, Wendy D. W. T. [1 ]
Ahli, Valian Fil [1 ]
Rizki, May Iffah [1 ]
Hasani, Lintang Matahari [1 ]
Adibah, Jihan [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Depok, Indonesia
来源
2020 5TH INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2020) | 2020年
关键词
Intelligent Systems; Data Stream; Chernoff Bound; Standard Deviation; FIMT-DD; Big Data;
D O I
10.1109/iwbis50925.2020.9255607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Big data processing is a challenging job. Extensive time-series data need a method of preparation, management, and feature calculation for each data arrival. FIMT-DD is an algorithm for processing predictive regression for big data. The splitting criteria in the standard FIMT-DD algorithm use a Hoeffding Bound. We propose to change the splitting criteria to Chernoff bound. The experimental results and the performance comparisons that we did have better results than the standard method. We use three real-world datasets. The improvement that we propose can produce a 2.3% accuracy improvement for traffic demand data.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 18 条
[1]   Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure [J].
Asencio-Cortes, G. ;
Morales-Esteban, A. ;
Shang, X. ;
Martinez-Alvarez, F. .
COMPUTERS & GEOSCIENCES, 2018, 115 :198-210
[2]   Big Data Stream Learning with SAMOA [J].
Bifet, Albert ;
De Francisci Morales, Gianmarco .
2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, :1199-1202
[3]   A sliced inverse regression approach for data stream [J].
Chavent, Marie ;
Girard, Stephane ;
Kuentz-Simonet, Vanessa ;
Liquet, Benoit ;
Thi Mong Ngoc Nguyen ;
Saracco, Jerome .
COMPUTATIONAL STATISTICS, 2014, 29 (05) :1129-1152
[4]   A NOTE ON AN INEQUALITY INVOLVING THE NORMAL-DISTRIBUTION [J].
CHERNOFF, H .
ANNALS OF PROBABILITY, 1981, 9 (03) :533-535
[5]   An ensemble based on neural networks with random weights for online data stream regression [J].
de Almeida, Ricardo ;
Goh, Yee Mey ;
Monfared, Radmehr ;
Steiner, Maria Teresinha Arns ;
West, Andrew .
SOFT COMPUTING, 2020, 24 (13) :9835-9855
[6]   PALM: An Incremental Construction of Hyperplanes for Data Stream Regression [J].
Ferdaus, Md Meftahul ;
Pratama, Mahardhika ;
Anavatti, Sreenatha G. ;
Garratt, Matthew A. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (11) :2115-2129
[7]  
Grab, TRAFFIC MANAGEMENT
[9]   Learning model trees from evolving data streams [J].
Ikonomovska, Elena ;
Gama, Joao ;
Dzeroski, Saso .
DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 23 (01) :128-168
[10]   Online Active Learning in Data Stream Regression Using Uncertainty Sampling Based on Evolving Generalized Fuzzy Models [J].
Lughofer, Edwin ;
Pratama, Mahardhika .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (01) :292-309