Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light

被引:125
作者
Li, Wei [1 ]
Chu, Xiao-shan [1 ]
Wang, Fei [1 ]
Dang, Yan-yan [1 ]
Liu, Xiao-yun [1 ]
Ma, Teng-hao [1 ]
Li, Jia-yuan [1 ]
Wang, Chuan-yi [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Shaanxi Key Lab Chem Addit Ind, Xian 710021, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Shaanxi, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 304卷
基金
中国国家自然科学基金;
关键词
Palladium single-atom; Hexagonal CdS; Overall water splitting; Hydrogen production; Simulated-solar-light; VISIBLE-LIGHT; CARBON DOTS; REDUCTION; PERFORMANCE; STABILITY; CATALYSTS; DRIVEN; CO2;
D O I
10.1016/j.apcatb.2021.121000
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-induced overall water splitting to produce hydrogen is inspiring towards energy sustainability, but it is also formidable due to its limited efficiency seriously hindering its scale up for practical application. CdS is an important transition metal sulfide with low-work-function. However, its photostability is often deteriorated due to photocorrosion influence. To overcome this issue, single-atom Pd was employed here to decorate CdS to form a CdS-Pd nanocatalyst through a simple and controllable photoinduced reduction strategy. The synergetic semiconductor (CdS)-metal (Pd) interaction promotes the fast bulk-to-surface electron migration, thereby the resultant CdS-Pd (3.83 parts per thousand) nanocatalyst shows considerable structural stability and dramatically improved solar induced HER activity in overall water splitting, about 110-fold higher than that of pristine CdS. Meanwhile, high apparent quantum yields (AQYs) of 4.47%/1.81% and 33.92%/27.49% were respectively achieved with this decorated nanocatalyst under the light of 420 nm/500 nm in absence and presence of scavenger, demonstrating the high-efficiency under broadband light illumination. Density functional theory (DFT) calculation supports that the easy formation of H* intermediates on the decorated nanocatalyst due to low energy barriers accounts for the internal promoted mechanism for hydrogen production. This study provides important insight to gain stable CdSbased photocatalysts for high-efficient hydrogen production by overall water splitting.
引用
收藏
页数:9
相关论文
共 62 条
[1]   Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting [J].
Ai, Zizheng ;
Zhang, Kang ;
Shi, Dong ;
Chang, Bin ;
Shao, Yongliang ;
Zhang, Lei ;
Wu, Yongzhong ;
Hao, Xiaopeng .
NANO ENERGY, 2020, 69
[2]   Anchoring Single-Atom Ru on CdS with Enhanced CO2 Capture and Charge Accumulation for High Selectivity of Photothermocatalytic CO2 Reduction to Solar Fuels [J].
Cai, Songcai ;
Zhang, Meng ;
Li, Juanjuan ;
Chen, Jing ;
Jia, Hongpeng .
SOLAR RRL, 2021, 5 (02)
[3]   Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction [J].
Cao, Yuehan ;
Guo, Lan ;
Dan, Meng ;
Doronkin, Dmitry E. ;
Han, Chunqiu ;
Rao, Zhiqiang ;
Liu, Yang ;
Meng, Jie ;
Huang, Zeai ;
Zheng, Kaibo ;
Chen, Peng ;
Dong, Fan ;
Zhou, Ying .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Photoinduced Strong Metal-Support Interaction for Enhanced Catalysis [J].
Chen, Hao ;
Yang, Zhenzhen ;
Wang, Xiang ;
Polo-Garzon, Felipe ;
Halstenberg, Phillip W. ;
Wang, Tao ;
Suo, Xian ;
Yang, Shi-Ze ;
Meyer, Harry M., III ;
Wu, Zili ;
Dai, Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (23) :8521-8526
[5]   A Visible-Light-Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur-Carbon Cross-Coupling Dual Catalyst [J].
Chen, Hui ;
Liu, Wanlu ;
Laemont, Andreas ;
Krishnaraj, Chidharth ;
Feng, Xiao ;
Rohman, Fadli ;
Meledina, Maria ;
Zhang, Qiqi ;
Van Deun, Rik ;
Leus, Karen ;
Van Der Voort, Pascal .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (19) :10820-10827
[6]   Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents [J].
Chen, Wei ;
Huang, Guo-Bo ;
Song, Hao ;
Zhang, Jian .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (40) :20963-20969
[7]   Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production [J].
Chen, Yuanjun ;
Ji, Shufang ;
Sun, Wenming ;
Lei, Yongpeng ;
Wang, Qichen ;
Li, Ang ;
Chen, Wenxing ;
Zhou, Gang ;
Zhang, Zedong ;
Wang, Yu ;
Zheng, Lirong ;
Zhang, Qinghua ;
Gu, Lin ;
Han, Xiaodong ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (03) :1295-1301
[8]   Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution [J].
Feng, Rongjuan ;
Wan, Kaiwei ;
Sui, Xinyu ;
Zhao, Na ;
Li, Huaxing ;
Lei, Wanying ;
Yu, Jiaguo ;
Liu, Xinfeng ;
Shi, Xinghua ;
Zhai, Maolin ;
Liu, Gang ;
Wang, Hui ;
Zheng, Lirong ;
Liu, Minghua .
NANO TODAY, 2021, 37
[9]   Efficient photocatalytic overall water splitting over a core-shell GaInZnON@ GaInON homojunction [J].
Fu, Wenlong ;
Guan, Xiangjiu ;
Huang, Zhenxiong ;
Liu, Maochang ;
Guo, Liejin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
[10]   Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading [J].
Gao, Ruijie ;
Wang, Jian ;
Huang, Zhen-Feng ;
Zhang, Rongrong ;
Wang, Wei ;
Pan, Lun ;
Zhang, Junfeng ;
Zhu, Weikang ;
Zhang, Xiangwen ;
Shi, Chengxiang ;
Lim, Jongwoo ;
Zou, Ji-Jun .
NATURE ENERGY, 2021, 6 (06) :614-623