One-qubit reduced states of a pure many-qubit state: Polygon inequalities

被引:77
作者
Higuchi, A [1 ]
Sudbery, A [1 ]
Szulc, J [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
D O I
10.1103/PhysRevLett.90.107902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a necessary and sufficient condition for a set of n one-qubit mixed states to be the reduced states of a pure n-qubit state is that their smaller eigenvalues should satisfy polygon inequalities: each of them must be no greater than the sum of the others.
引用
收藏
页数:3
相关论文
共 5 条
[1]   Parametrization and distillability of three-qubit entanglement [J].
Brun, TA ;
Cohen, O .
PHYSICS LETTERS A, 2001, 281 (2-3) :88-100
[2]   Distillation of Greenberger-Horne-Zeilinger states by selective information manipulation [J].
Cohen, O ;
Brun, TA .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5908-5911
[3]   How entangled can two couples get? [J].
Higuchi, A ;
Sudbery, A .
PHYSICS LETTERS A, 2000, 273 (04) :213-217
[4]  
LINDEN N, QUANTPH0207109
[5]   On local invariants of pure three-qubit states [J].
Sudbery, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03) :643-652