On the reconstruction of a convolution perturbation of the Sturm-Liouville operator from the spectrum

被引:32
作者
Buterin, S. A. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
基金
俄罗斯基础研究基金会;
关键词
Inverse Problem; Convolution Operator; Liouville Operator; Nonlinear Integral Equation; Liouville Problem;
D O I
10.1134/S0012266110010167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the sum of the Sturm-Liouville operator and a convolution operator. We study the inverse problem of reconstructing the convolution operator from the spectrum. This problem is reduced to a nonlinear integral equation with a singularity. We prove the global solvability of this nonlinear equation, which permits one to show that the asymptotics of the spectrum is a necessary and sufficient condition for the solvability of the inverse problem. The proof is constructive.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1988, DIFFER URAVN
[3]   The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation [J].
Buterin, S. A. .
INVERSE PROBLEMS, 2006, 22 (06) :2223-2236
[4]  
Buterin S. A., 2006, MAT ZAMETKI, V80, P668, DOI 10.4213/mzm3076
[5]   On an inverse spectral problem for a convolution integro-differential operator [J].
Buterin, Sergey Alexandrovich .
RESULTS IN MATHEMATICS, 2007, 50 (3-4) :173-181
[6]  
Freiling G., 2001, INVERSE STURM LIOUVI
[7]  
KURYSHOVA YV, 2007, MAT ZAMETKI, V81, P855, DOI 10.4213/mzm3736
[8]  
Levitan B. M., 1984, Obratnye zadachi Shturma-Liuvillya i ikh prilozheniya
[9]  
MALAMUD MM, 1979, KRAEVYE ZADACHI MATE, P116
[10]  
MALAMUD MM, 1993, T MOSK MAT OBS, V55, P73