Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks

被引:3
作者
Gardner, Brian [1 ]
Gruening, Andre [2 ]
机构
[1] Univ Surrey, Dept Comp Sci, Guildford, Surrey, England
[2] Univ Appl Sci, Fac Elect Engn & Comp Sci, Stralsund, Germany
关键词
spiking neural networks; multilayer SNN; supervised learning; backpropagation; temporal coding; classification; MNIST; BACKPROPAGATION; CLASSIFICATION; PLASTICITY; NEURONS; MODELS; RULE;
D O I
10.3389/fncom.2021.617862
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Experimental studies support the notion of spike-based neuronal information processing in the brain, with neural circuits exhibiting a wide range of temporally-based coding strategies to rapidly and efficiently represent sensory stimuli. Accordingly, it would be desirable to apply spike-based computation to tackling real-world challenges, and in particular transferring such theory to neuromorphic systems for low-power embedded applications. Motivated by this, we propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems based on a rapid, first-to-spike decoding strategy. The proposed learning rule supports multiple spikes fired by stochastic hidden neurons, and yet is stable by relying on first-spike responses generated by a deterministic output layer. In addition to this, we also explore several distinct, spike-based encoding strategies in order to form compact representations of presented input data. We demonstrate the classification performance of the learning rule as applied to several benchmark datasets, including MNIST. The learning rule is capable of generalizing from the data, and is successful even when used with constrained network architectures containing few input and hidden layer neurons. Furthermore, we highlight a novel encoding strategy, termed "scanline encoding," that can transform image data into compact spatiotemporal patterns for subsequent network processing. Designing constrained, but optimized, network structures and performing input dimensionality reduction has strong implications for neuromorphic applications.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] In-Hardware Learning of Multilayer Spiking Neural Networks on a Neuromorphic Processor
    Shrestha, Amar
    Fang, Haowen
    Rider, Daniel Patrick
    Mei, Zaidao
    Qiu, Qinru
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 367 - 372
  • [42] Training spiking neural networks to associate spatio-temporal input-output spike patterns
    Mohemmed, Ammar
    Schliebs, Stefan
    Matsuda, Satoshi
    Kasabov, Nikola
    NEUROCOMPUTING, 2013, 107 : 3 - 10
  • [43] Event-driven spiking neural networks with spike-based learning
    Ning, Limiao
    Dong, Junfei
    Xiao, Rong
    Tan, Kay Chen
    Tang, Huajin
    MEMETIC COMPUTING, 2023, 15 (02) : 205 - 217
  • [44] SPIDE: A purely spike-based method for training feedback spiking neural networks
    Xiao, Mingqing
    Meng, Qingyan
    Zhang, Zongpeng
    Wang, Yisen
    Lin, Zhouchen
    NEURAL NETWORKS, 2023, 161 : 9 - 24
  • [45] Efficient and Robust Supervised Learning Algorithm for Spiking Neural Networks
    Zhang Y.
    Geng T.
    Zhang M.
    Wu X.
    Zhou J.
    Qu H.
    Sensing and Imaging, 2018, 19 (1):
  • [46] Supervised Learning with Small Training Set for Gesture Recognition by Spiking Neural Networks
    Gyongyossy, Natabara Mate
    Domonkos, Mark
    Botzheim, Janos
    Korondi, Peter
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2201 - 2206
  • [47] The maximum points-based supervised learning rule for spiking neural networks
    Xiurui Xie
    Guisong Liu
    Qing Cai
    Hong Qu
    Malu Zhang
    Soft Computing, 2019, 23 : 10187 - 10198
  • [48] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [49] Online Supervised Learning for Hardware-Based Multilayer Spiking Neural Networks Through the Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity
    Zheng, Nan
    Mazumder, Pinaki
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4287 - 4302
  • [50] STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking neural networks
    Mirsadeghi, Maryam
    Shalchian, Majid
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    NEUROCOMPUTING, 2021, 427 : 131 - 140