Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks

被引:3
作者
Gardner, Brian [1 ]
Gruening, Andre [2 ]
机构
[1] Univ Surrey, Dept Comp Sci, Guildford, Surrey, England
[2] Univ Appl Sci, Fac Elect Engn & Comp Sci, Stralsund, Germany
关键词
spiking neural networks; multilayer SNN; supervised learning; backpropagation; temporal coding; classification; MNIST; BACKPROPAGATION; CLASSIFICATION; PLASTICITY; NEURONS; MODELS; RULE;
D O I
10.3389/fncom.2021.617862
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Experimental studies support the notion of spike-based neuronal information processing in the brain, with neural circuits exhibiting a wide range of temporally-based coding strategies to rapidly and efficiently represent sensory stimuli. Accordingly, it would be desirable to apply spike-based computation to tackling real-world challenges, and in particular transferring such theory to neuromorphic systems for low-power embedded applications. Motivated by this, we propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems based on a rapid, first-to-spike decoding strategy. The proposed learning rule supports multiple spikes fired by stochastic hidden neurons, and yet is stable by relying on first-spike responses generated by a deterministic output layer. In addition to this, we also explore several distinct, spike-based encoding strategies in order to form compact representations of presented input data. We demonstrate the classification performance of the learning rule as applied to several benchmark datasets, including MNIST. The learning rule is capable of generalizing from the data, and is successful even when used with constrained network architectures containing few input and hidden layer neurons. Furthermore, we highlight a novel encoding strategy, termed "scanline encoding," that can transform image data into compact spatiotemporal patterns for subsequent network processing. Designing constrained, but optimized, network structures and performing input dimensionality reduction has strong implications for neuromorphic applications.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation
    Luo, Xiaoling
    Qu, Hong
    Wang, Yuchen
    Yi, Zhang
    Zhang, Jilun
    Zhang, Malu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 10141 - 10153
  • [2] Supervised learning algorithm based on spike optimization mechanism for multilayer spiking neural networks
    Hu, Tiandou
    Lin, Xianghong
    Wang, Xiangwen
    Du, Pangao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (07) : 1981 - 1995
  • [3] Supervised learning in multilayer spiking neural networks with inner products of spike trains
    Lin, Xianghong
    Wang, Xiangwen
    Hao, Zhanjun
    NEUROCOMPUTING, 2017, 237 : 59 - 70
  • [4] A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks
    Taherkhani, Aboozar
    Belatreche, Ammar
    Li, Yuhua
    Maguire, Liam P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5394 - 5407
  • [5] Supervised Learning in Multilayer Spiking Neural Networks
    Sporea, Ioana
    Gruening, Andre
    NEURAL COMPUTATION, 2013, 25 (02) : 473 - 509
  • [6] Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization
    Fu, Chentao
    Xiang, Shuiying
    Han, Yanan
    Song, Ziwei
    Hao, Yue
    PHOTONICS, 2022, 9 (04)
  • [7] A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks
    Xu, Yan
    Zeng, Xiaoqin
    Han, Lixin
    Yang, Jing
    NEURAL NETWORKS, 2013, 43 : 99 - 113
  • [8] Supervised Learning of Logical Operations in Layered Spiking Neural Networks with Spike Train Encoding
    Gruening, Andre
    Sporea, Ioana
    NEURAL PROCESSING LETTERS, 2012, 36 (02) : 117 - 134
  • [9] Supervised learning algorithm based on spike optimization mechanism for multilayer spiking neural networks
    Tiandou Hu
    Xianghong Lin
    Xiangwen Wang
    Pangao Du
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 1981 - 1995
  • [10] SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
    Zenke, Friedemann
    Ganguli, Surya
    NEURAL COMPUTATION, 2018, 30 (06) : 1514 - 1541