Essential equilibria in normal-form games

被引:35
作者
Carbonell-Nicolau, Oriol [1 ]
机构
[1] Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
关键词
Infinite normal-form game; Equilibrium refinement; Essential equilibrium; Payoff security; EXISTENCE; PURE;
D O I
10.1016/j.jet.2009.06.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
A Nash equilibrium x of a normal-form game G is essential if any perturbation of G has an equilibrium close to x. Using payoff perturbations, we show that for games that are generic in the set of compact, quasiconcave, and generalized payoff secure games with upper semicontinuous sum of payoffs, all equilibria are essential. Some variants of this result are also established. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 18 条
[1]  
Aliprantis C., 2006, INFINITE DIMENSIONAL
[2]   STRATEGICALLY STABLE EQUILIBRIA IN GAMES WITH INFINITELY MANY PURE STRATEGIES [J].
ALNAJJAR, N .
MATHEMATICAL SOCIAL SCIENCES, 1995, 29 (02) :151-164
[3]   Reciprocal upper semicontinuity and better reply secure games: A comment [J].
Bagh, Adib ;
Jofre, Alejandro .
ECONOMETRICA, 2006, 74 (06) :1715-1721
[4]  
Barelli P., 2009, EXISTENCE NASH UNPUB
[5]  
CARBONELLNICOLA.O, 2009, PERFECT EQUILI UNPUB
[6]  
CARBONELLNICOLA.O, 2009, EQUILIBRIUM RE UNPUB
[7]  
CARBONELLNICOLA.O, 2009, EXISTENCE PURE UNPUB
[8]  
CARMONA G, 2009, UNIFYING APPRO UNPUB
[9]   An existence result for discontinuous games [J].
Carmona, Guilherme .
JOURNAL OF ECONOMIC THEORY, 2009, 144 (03) :1333-1340
[10]   THE EXISTENCE OF EQUILIBRIUM IN DISCONTINUOUS ECONOMIC GAMES .1. THEORY [J].
DASGUPTA, P ;
MASKIN, E .
REVIEW OF ECONOMIC STUDIES, 1986, 53 (01) :1-26