Three dimensional Compton scattering tomography

被引:15
|
作者
Webber, James W. [1 ]
Lionheart, William R. B. [2 ]
机构
[1] Tufts Univ, Halligan Hall,126 Coll Ave, Medford, MA 02155 USA
[2] Univ Manchester, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Compton scattering; tomography; integral transforms; spindle torus; x-rays; gamma rays; TRANSFORMS;
D O I
10.1088/1361-6420/aac51e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new acquisition geometry for electron density reconstruction in three dimensional x-ray Compton imaging using a monochromatic source. This leads us to a new three dimensional inverse problem where we aim to reconstruct a real valued function f (the electron density) from its integrals over spindle tori. We prove injectivity of a generalized spindle torus transform on the set of smooth functions compactly supported on a hollow ball. This is obtained through the explicit inversion of a class of Volterra integral operators, whose solutions give us an expression for the harmonic coefficients of f. The polychromatic source case is later considered, and we prove injectivity of a new spindle interior transform, apple transform and apple interior transform on the set of smooth functions compactly supported on a hollow ball. A possible physical model is suggested for both source types. We also provide simulated density reconstructions with varying levels of added pseudo random noise and model the systematic error due to the attenuation of the incoming and scattered rays in our simulation.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Modeling and simulation results on a new Compton scattering tomography modality
    Rigaud, Gael
    Nguyen, Mai K.
    Louis, Alfred K.
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 28 - 44
  • [32] Tomography using Rayleigh and Compton scattering with digital image reconstruction
    Duvauchelle, P
    Peix, G
    Freud, N
    Babot, D
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P10): : 435 - 448
  • [33] The convergence condition of the successive approximation process in Compton scattering tomography
    Wang, JJ
    Huang, XW
    Zhong, XR
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (04) : 2149 - 2152
  • [34] Higher-Dimensional Caustics in Nonlinear Compton Scattering
    Kharin, Vasily Yu.
    Seipt, Daniel
    Rykovanov, Sergey G.
    PHYSICAL REVIEW LETTERS, 2018, 120 (04)
  • [35] 90-DEGREES COMPTON-SCATTERING TOMOGRAPHY OF LUNG
    GUZZARDI, R
    MEY, M
    PISTOLESI, M
    SOLFANELLI, S
    GIUNTINI, C
    JOURNAL OF NUCLEAR MEDICINE AND ALLIED SCIENCES, 1978, 22 (01): : 11 - 19
  • [36] COMPTON SCATTERING IN X-RAY AND POSITRON EMISSION TOMOGRAPHY
    Yarovenko, I. P.
    Kazantcev, I. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : C172 - C181
  • [37] Compton scattering tomography in the study of a dense inclusion in a lighter matrix
    Balogun, F.A.
    Spyrou, N.M.
    1600, (83):
  • [38] Modeling and Reconstruction Strategy for Compton Scattering Tomography with Scintillation Crystals
    Kuger, Lorenz
    Rigaud, Gael
    CRYSTALS, 2021, 11 (06):
  • [39] Hadron optics in three-dimensional invariant coordinate space from deeply virtual Compton scattering
    Brodsky, S. J.
    Chakrabarti, D.
    Harindranath, A.
    Mukherjee, A.
    Vary, J. P.
    PHYSICAL REVIEW D, 2007, 75 (01):
  • [40] Three-Dimensional Tomography of Scattering Inhomogeneities by a Cylindrical Multistatic Probing System
    Sukhanov, D. Ya.
    Khalil, A.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2023, 59 (03) : 374 - 380