Three dimensional Compton scattering tomography

被引:15
|
作者
Webber, James W. [1 ]
Lionheart, William R. B. [2 ]
机构
[1] Tufts Univ, Halligan Hall,126 Coll Ave, Medford, MA 02155 USA
[2] Univ Manchester, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Compton scattering; tomography; integral transforms; spindle torus; x-rays; gamma rays; TRANSFORMS;
D O I
10.1088/1361-6420/aac51e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new acquisition geometry for electron density reconstruction in three dimensional x-ray Compton imaging using a monochromatic source. This leads us to a new three dimensional inverse problem where we aim to reconstruct a real valued function f (the electron density) from its integrals over spindle tori. We prove injectivity of a generalized spindle torus transform on the set of smooth functions compactly supported on a hollow ball. This is obtained through the explicit inversion of a class of Volterra integral operators, whose solutions give us an expression for the harmonic coefficients of f. The polychromatic source case is later considered, and we prove injectivity of a new spindle interior transform, apple transform and apple interior transform on the set of smooth functions compactly supported on a hollow ball. A possible physical model is suggested for both source types. We also provide simulated density reconstructions with varying levels of added pseudo random noise and model the systematic error due to the attenuation of the incoming and scattered rays in our simulation.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] On a three-dimensional Compton scattering tomography system with fixed source
    Cebeiro, J.
    Tarpau, C.
    Morvidone, M. A.
    Rubio, D.
    Nguyen, M. K.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [2] Three-dimensional theory of emittance in Compton scattering
    Hartemann, FV
    Le Foll, A
    Kerman, AK
    Rupp, B
    Gibson, DJ
    Landahl, EC
    Troha, AL
    Luhmann, NC
    Baldis, HA
    ADVANCED ACCELERATOR CONCEPTS, 2001, 569 : 450 - 464
  • [3] Classical theory of nonlinear Compton scattering and three-dimensional ponderomotive scattering
    Hartemann, FV
    Landahl, EC
    Van Meter, JR
    Troha, AL
    Kerman, AK
    Luhmann, NC
    APPLICATIONS OF HIGH-FIELD AND SHORT WAVELENGTH SOURCES, 1998, : 213 - 222
  • [4] Three-dimensional theory of weakly nonlinear Compton scattering
    Albert, F.
    Anderson, S. G.
    Gibson, D. J.
    Marsh, R. A.
    Siders, C. W.
    Barty, C. P. J.
    Hartemann, F. V.
    PHYSICS OF PLASMAS, 2011, 18 (01)
  • [5] COMPTON-SCATTERING TOMOGRAPHY
    NORTON, SJ
    JOURNAL OF APPLIED PHYSICS, 1994, 76 (04) : 2007 - 2015
  • [6] ON A CYLINDRICAL SCANNING MODALITY IN THREE-DIMENSIONAL COMPTON SCATTER TOMOGRAPHY
    Webber, James W.
    INVERSE PROBLEMS AND IMAGING, 2024, 18 (05) : 1243 - 1271
  • [8] Analytic reconstruction of Compton scattering tomography
    Ctr. Digit. Sign. Proc. M., Dept. of Electron. and Info. Eng., Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
    不详
    J Appl Phys, 3 (1693-1698):
  • [9] Compton scattering tomography in translational geometries
    Webber, James
    Miller, Eric L.
    INVERSE PROBLEMS, 2020, 36 (02)
  • [10] Combined Modalities of Compton Scattering Tomography
    Rigaud, Gael
    Regnier, Remi
    Nguyen, Mai K.
    Zaidi, Habib
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (03) : 1570 - 1577