Time-optimal control of finite quantum systems

被引:8
作者
Weaver, N [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
D O I
10.1063/1.533407
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate time-optimal control of finite quantum systems in the Born approximation. A bang-bang principle is found to follow from a result in [C. A. Akemann and J. Anderson, Mem. Amer. Math. Soc. 458 (1991)]. We also prove existence of time-optimal controls, characterize when they are unique, and assuming uniqueness, explicitly describe them. (C) 2000 American Institute of Physics. [S0022-2488(00)00908-7].
引用
收藏
页码:5262 / 5269
页数:8
相关论文
共 23 条
[1]  
AKEMANN CA, 1991, MEM AM MATH SOC, V458
[2]   APPLICATION OF QUANTUM STOCHASTIC CALCULUS TO OPTIMAL-CONTROL [J].
BOUKAS, A .
MATHEMATICAL NOTES, 1993, 53 (5-6) :489-494
[3]  
BUTKOVSKII AG, 1979, AUTOMAT REM CONTR+, V40, P629
[4]  
Butkovskiy A.G., 1990, Control of Quantum-Mechanical Processes and Systems
[5]  
HELSON H, 1983, HARMONIC ANAL
[6]  
Hermes H., 1969, FUNCTIONAL ANAL TIME
[7]   ON THE CONTROLLABILITY OF QUANTUM-MECHANICAL SYSTEMS [J].
HUANG, GM ;
TARN, TJ ;
CLARK, JW .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (11) :2608-2618
[8]   TEACHING LASERS TO CONTROL MOLECULES [J].
JUDSON, RS ;
RABITZ, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1500-1503
[9]   CONTROL-SYSTEMS ON LIE GROUPS [J].
JURDJEVIC, V ;
SUSSMANN, HJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (02) :313-+
[10]  
Kadison RV, 1986, FUNDAMENTALS THEORY, VII