High-order numerical method for scattering data of the Korteweg-De Vries equation

被引:1
|
作者
Gudko, A. [1 ,2 ]
Gelash, A. [3 ,4 ]
Mullyadzhanov, R. [1 ,2 ]
机构
[1] Inst Thermophys SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Inst Automat & Electrometry SB RAS, Novosibirsk 630090, Russia
[4] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
基金
俄罗斯基础研究基金会;
关键词
NONLINEAR FOURIER-ANALYSIS; DEVRIES EQUATION; COMPUTATION; TRANSFORM; ALGORITHMS; INTEGRALS;
D O I
10.1088/1742-6596/1677/1/012011
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nonlinear wavefields governed by integrable models such as the Korteweg-De Vries (KdV) equation can be decomposed into the so-called scattering data playing the role of independent elementary harmonics evolving trivially in time. A typical scattering data portrait of a spatially localised wavefield represents nonlinear coherent wave structures (solitons) and incoherent radiation. In this work we present a fourth-order accurate algorithm to compute the scattering data within the KdV model. The method based on the Magnus expansion technique provides accurate information about soliton amplitudes, velocities and intensity of the radiation. Our tests performed using a box-shaped wavefield confirm that all components of the scattering data are computed correctly, while the test based on a single-soliton solution verifies the declared order of a numerical scheme.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [42] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [43] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48
  • [44] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [45] INVERSE SCATTERING TRANSFORM FOR A SUPERSYMMETRIC KORTEWEG-DE VRIES EQUATION
    Zhang, Sheng
    You, Caihong
    THERMAL SCIENCE, 2019, 23 : S677 - S684
  • [46] ON THE SCATTERING OF SUBCRITICAL DEFOCUSING GENERALIZED KORTEWEG-DE VRIES EQUATION
    Kim, Taegyu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (06) : 2241 - 2269
  • [47] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [48] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [49] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [50] Inverse Scattering and Loaded Modified Korteweg-de Vries Equation
    Feckan, Michal
    Urazboev, Gayrat
    Baltaeva, Iroda
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (02): : 174 - 183