High-order numerical method for scattering data of the Korteweg-De Vries equation

被引:1
作者
Gudko, A. [1 ,2 ]
Gelash, A. [3 ,4 ]
Mullyadzhanov, R. [1 ,2 ]
机构
[1] Inst Thermophys SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Inst Automat & Electrometry SB RAS, Novosibirsk 630090, Russia
[4] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
来源
XXXVI SIBERIAN THERMOPHYSICAL SEMINAR (STS 36) | 2020年 / 1677卷
基金
俄罗斯基础研究基金会;
关键词
NONLINEAR FOURIER-ANALYSIS; DEVRIES EQUATION; COMPUTATION; TRANSFORM; ALGORITHMS; INTEGRALS;
D O I
10.1088/1742-6596/1677/1/012011
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nonlinear wavefields governed by integrable models such as the Korteweg-De Vries (KdV) equation can be decomposed into the so-called scattering data playing the role of independent elementary harmonics evolving trivially in time. A typical scattering data portrait of a spatially localised wavefield represents nonlinear coherent wave structures (solitons) and incoherent radiation. In this work we present a fourth-order accurate algorithm to compute the scattering data within the KdV model. The method based on the Magnus expansion technique provides accurate information about soliton amplitudes, velocities and intensity of the radiation. Our tests performed using a box-shaped wavefield confirm that all components of the scattering data are computed correctly, while the test based on a single-soliton solution verifies the declared order of a numerical scheme.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 1981, SOLITONS INVERSE SCA
[2]   The Magnus expansion and some of its applications [J].
Blanes, S. ;
Casas, F. ;
Oteo, J. A. ;
Ros, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6) :151-238
[3]   COMPUTATION OF THE DIRECT SCATTERING TRANSFORM FOR THE NONLINEAR SCHROEDINGER EQUATION [J].
BOFFETTA, G ;
OSBORNE, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 102 (02) :252-264
[4]   Numerical algorithms for the direct spectral transform with applications to nonlinear Schrodinger type systems [J].
Burtsev, S ;
Camassa, R ;
Timofeyev, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :166-186
[5]   Numerical simulation of a solitonic gas in KdV and KdV-BBM equations [J].
Dutykh, Denys ;
Pelinovsky, Efim .
PHYSICS LETTERS A, 2014, 378 (42) :3102-3110
[6]  
Faddeev LD., 2007, HAMILTONIAN METHODS
[7]   Efficient numerical method for solving the direct Zakharov-Shabat scattering problem [J].
Frumin, Leonid L. ;
Belai, Oleg V. ;
Podivilov, Eugeny V. ;
Shapiro, David A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (02) :290-296
[8]  
Garc G, 2019, J LIGHTWAVE TECHNOL, V37, P3563
[9]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[10]   Anomalous errors of direct scattering transform [J].
Gelash, Andrey ;
Mullyadzhanov, Rustam .
PHYSICAL REVIEW E, 2020, 101 (05)