Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core.
机构:
Coll France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, FranceColl France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, France
Aussillous, P
Quéré, D
论文数: 0引用数: 0
h-index: 0
机构:
Coll France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, FranceColl France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, France
机构:
Coll France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, FranceColl France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, France
Aussillous, P
Quéré, D
论文数: 0引用数: 0
h-index: 0
机构:
Coll France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, FranceColl France, CNRS, URA 792, Phys Mat Condensee Lab, F-75231 Paris 05, France