On quaternary MacDonald codes

被引:13
作者
Colbourn, CJ [1 ]
Gupta, MK [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
来源
ITCC 2003: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: COMPUTERS AND COMMUNICATIONS, PROCEEDINGS | 2003年
关键词
D O I
10.1109/ITCC.2003.1197528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies two families of codes over Z(4), MacDonald codes of type alpha and type beta. The torsion code, weight distribution, and Gray image properties are studied. Some interesting optimal binary codes are also obtained. Two nonlinear families of binary codes are obtained via the Gray map.
引用
收藏
页码:212 / 215
页数:4
相关论文
共 10 条
[1]  
Bhandari MC, 1999, LECT NOTES COMPUT SC, V1719, P170
[2]  
DODUNEKOV S, 1998, ELECT J COMBINATORIC, V5, pR37
[3]  
GUPTA M, 2000, THESIS IIT KANPUR IN
[4]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[5]  
Honold Thomas, 2000, Electron. J. Combin., V7, DOI [DOI 10.37236/1489, 10.37236/1489]
[6]   DESIGN METHODS FOR MAXIMUM MINIMUM-DISTANCE ERROR-CORRECTING CODES [J].
MACDONALD, JE .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (01) :43-57
[7]   MAXIMAL Q-NARY LINEAR CODES WITH LARGE MINIMUM DISTANCE [J].
PATEL, AM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) :106-110
[8]  
Pless V., 1998, HDB CODING THEORY
[9]   ON LINEAR CODES WHICH ATTAIN THE SOLOMON-STIFFLER BOUND [J].
TAMARI, F .
DISCRETE MATHEMATICS, 1984, 49 (02) :179-191
[10]  
Wan Z-X, 1997, QUATERNARY CODES