Phase transition of surface models with intrinsic curvature

被引:14
作者
Koibuchi, H [1 ]
Kusano, N [1 ]
Nidaira, A [1 ]
Sasaki, Z [1 ]
Suzuki, K [1 ]
机构
[1] Ibaraki Coll Technol, Dept Mech & Syst Engn, Ibaraki 3128508, Japan
关键词
D O I
10.1140/epjb/e2005-00015-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
It is reported that a surface model of Polyakov strings undergoes a first-order phase transition between smooth and crumpled (or branched polymer) phases. The Hamiltonian of the model contains the Gaussian term and a deficit angle term corresponding to the weight of the integration measure dX in the partition function.
引用
收藏
页码:561 / 566
页数:6
相关论文
共 47 条
[1]   DIFFRACTION FROM POLYMERIZED MEMBRANES [J].
ABRAHAM, FF ;
NELSON, DR .
SCIENCE, 1990, 249 (4967) :393-397
[2]   FLUCTUATIONS IN THE FLAT AND COLLAPSED PHASES OF POLYMERIZED MEMBRANES [J].
ABRAHAM, FF ;
NELSON, DR .
JOURNAL DE PHYSIQUE, 1990, 51 (23) :2653-2672
[3]   MOLECULAR-DYNAMICS OF TETHERED MEMBRANES [J].
ABRAHAM, FF ;
RUDGE, WE ;
PLISCHKE, M .
PHYSICAL REVIEW LETTERS, 1989, 62 (15) :1757-1759
[4]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[5]   THE THEORY OF DYNAMIC RANDOM SURFACES WITH EXTRINSIC CURVATURE [J].
AMBJORN, J ;
IRBACK, A ;
JURKIEWICZ, J ;
PETERSSON, B .
NUCLEAR PHYSICS B, 1993, 393 (03) :571-600
[6]   FLUID RANDOM SURFACES WITH EXTRINSIC CURVATURE .2. [J].
ANAGNOSTOPOULOS, K ;
BOWICK, M ;
CODDINGTON, P ;
FALCIONI, M ;
HAN, L ;
HARRIS, G ;
MARINARI, E .
PHYSICS LETTERS B, 1993, 317 (1-2) :102-106
[7]   The phase diagram of crystalline surfaces [J].
Anagnostopoulos, K ;
Bowick, MJ ;
Catterall, SM ;
Falcioni, M ;
Thorleifsson, G .
NUCLEAR PHYSICS B, 1996, :838-841
[8]   FREEZING A FLUID RANDOM SURFACE [J].
BAILLIE, CF ;
JOHNSTON, DA .
PHYSICAL REVIEW D, 1993, 48 (10) :5025-5028
[9]   SCALING IN STEINER RANDOM SURFACES [J].
BAILLIE, CF ;
IRBACK, A ;
JANKE, W ;
JOHNSTON, DA .
PHYSICS LETTERS B, 1994, 325 (1-2) :45-50
[10]   STEINER VARIATIONS ON RANDOM SURFACES [J].
BAILLIE, CF ;
ESPRIU, D ;
JOHNSTON, DA .
PHYSICS LETTERS B, 1993, 305 (1-2) :109-114