Existence of bounded solutions for nonlinear elliptic equations in unbounded domains

被引:22
作者
Dall'Aglio, A [1 ]
De Cicco, V [1 ]
Giachetti, D [1 ]
Puel, JP [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2004年 / 11卷 / 04期
关键词
existence; nonlinear elliptic equations; p-Laplacian; unbounded domains; L-infinity-estimate; homogeneous lower order terms;
D O I
10.1007/s00030-004-1070-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of bounded weak solutions for some nonlinear Dirichlet problems in unbounded domains. The principal part of the operator behaves like the p-laplacian operator, and the lower order terms, which depend on the solution u and its gradient delu, have a power growth of order p - 1 with respect to these variables, while they are bounded in the x variable. The source term belongs to a Lebesgue space with a prescribed asymptotic behaviour at infinity.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 15 条
[1]  
Alvino A., 1979, REND ACC NAZ LINCEI, V66, P1
[2]  
[Anonymous], 1966, SEMINAIRE MATH SUPER
[3]  
Bottaro G., 1973, Boll. Un. Mat. Ital, V8, P46
[4]  
CHICCO M, 2000, ANN MAT PUR APPL, V178, P325
[5]   Nonlinear elliptic equations with natural growth in general domains [J].
Dall'Aglio, A. ;
Giachetti, D. ;
Puel, J. -P. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2002, 181 (04) :407-426
[6]  
Del Vecchio T., 1995, Ric. Mat, V44, P421
[7]   QUASI-LINEAR ELLIPTIC-EQUATIONS WITH QUADRATIC GROWTH IN UNBOUNDED-DOMAINS [J].
DONATO, P ;
GIACHETTI, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) :791-804
[8]  
Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
[9]  
Giusti E, 1994, METODI DIRETTI NEL C
[10]  
Leray J., 1965, Bull. Soc. Math. Fr, V93, P97, DOI DOI 10.24033/BSMF.1617