共 50 条
Polarizable Molecular Dynamics Simulation of Zn(II) in Water Using the AMOEBA Force Field
被引:134
作者:
Wu, Johnny C.
[2
]
Piquemal, Jean-Philip
[1
,3
]
Chaudret, Robin
[1
,3
]
Reinhardt, Peter
[1
,3
]
Ren, Pengyu
[2
]
机构:
[1] Univ Paris 06, UPMC, Chim Theor Lab, UMR 7616, F-75005 Paris, France
[2] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[3] CNRS, Chim Theor Lab, UMR 7616, F-75005 Paris, France
关键词:
BIOLOGICALLY RELEVANT LIGANDS;
PARALLEL AB-INITIO;
ELECTRON LOCALIZATION;
FREE-ENERGY;
BENCHMARK CALCULATIONS;
TOPOLOGICAL ANALYSIS;
AQUEOUS-SOLUTIONS;
SOFT LIGANDS;
CALCIUM-ION;
BASIS-SETS;
D O I:
10.1021/ct100091j
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The hydration free energy, structure, and dynamics of the zinc divalent cation are studied using a polarizable force field in molecular dynamics simulations. Parameters for the Zn2+ are derived from gas-phase ab initio calculation of the Zn2+-water dimer. The Thole-based dipole polarization is adjusted on the basis of the constrained space orbital variations (CSOV) calculation, while the symmetry adapted perturbation theory (SAPT) approach is also discussed. The vdW parameters of Zn2+ have been obtained by comparing the AMOEBA Zn2+ water dimerization energy with results from several theory levels and basis sets over a range of distances. Molecular dynamics simulations of Zn2+ solvation in bulk water are subsequently performed with the polarizable force field. The calculated first-shell water coordination number, water residence lime, and free energy of hydration are consistent with experimental and previous theoretical values. The study is supplemented with extensive reduced variational space (RVS) and electron localization function (ELF) computations in order to unravel the nature of the bonding in Zn2+(H2O)(n) (n = 1, 6) complexes and to analyze the charge transfer contribution to the complexes. Results show that the importance of charge transfer decreases as the size of the Zn-water cluster grows due to anticooperativity and to changes in the nature of the metal ligand bonds. Induction could be dominated by polarization when the system approaches the condensed phase and the covalent effects are eliminated from the Zn(II)-water interaction. To construct an "effective" classical polarizable potential for Zn2+ in bulk water, one should therefore avoid overfilling to the ab initio charge transfer energy of the Zn2+-water dimer. Indeed, in order to avoid overestimation of the condensed-phase many-body effects, which is crucial to the transferability of polarizable molecular dynamics, charge transfer should not be included within the classical polarization contribution and should preferably be either incorporated into the pairwise van der Waals contribution or treated explicitly.
引用
收藏
页码:2059 / 2070
页数:12
相关论文
共 50 条