Robust time-fractional diffusion filtering for noise removal

被引:14
作者
Ben-loghfyry, Anouar [1 ]
Hakim, Abdelilah [1 ]
机构
[1] Cadi Ayyad Univ, LAMAI Lab, Marrakech, Morocco
关键词
anisotropic diffusion; Caputo derivative; finite difference; image denoising; robust denoising; time-order fractional derivative; ANISOTROPIC DIFFUSION; EDGE-DETECTION; MODEL; SOBOLEV;
D O I
10.1002/mma.8331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we utilize a time-fractional anisotropic diffusion equation for image denoising. Theoretical results are provided thanks to Schauder fixed-point theorem. A discretization scheme by finite difference is also presented. Numerical experiments show a great performance in deleting the noise while preserving important features. The model robustness is tested, which is clear visually and quantitatively. All the obtained results conclude that our model surpasses the competitive models, such as Perona-Malik and Weickert.
引用
收藏
页码:9719 / 9735
页数:17
相关论文
共 37 条
[1]  
Abderrahim L., 2020, B ELECT ENG INFORM, V9, P129, DOI [10.11591/eei.v9i1.1548, DOI 10.11591/EEI.V9I1.1548]
[2]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[3]  
[Anonymous], 1969, Nonlinear Functional Analysis
[4]  
Attouch A, 2005, MOS-SIAM SER OPTIMIZ, V6, P1
[5]  
Aubert G., 2006, MATH PROBLEMS IMAGE
[6]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[7]   Image decomposition and denoising using fractional-order partial differential equations [J].
Bai, Jian ;
Feng, Xiang-Chu .
IET IMAGE PROCESSING, 2020, 14 (14) :3471-3480
[8]  
Baloochian H, 2017, OPEN COMPUT SCI, V7, P9, DOI 10.1515/comp-2017-0002
[9]  
Brezis H, 2011, UNIVERSITEXT, P1
[10]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193