Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models

被引:3
作者
Zhang Hong-Biao [1 ]
Tian Li-Jun [2 ,3 ]
机构
[1] NE Normal Univ, Inst Theoret Phys, Changchun 130024, Peoples R China
[2] Shanghai Univ, Dept Phys, Coll Sci, Shanghai 200444, Peoples R China
[3] Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
COHERENT STATES;
D O I
10.1088/0256-307X/27/5/050304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We mainly explore the fidelity susceptibility based on the Lie algebraic method. On physical grounds, the exact expressions of fidelity susceptibilities can be respectively obtained in SU(2) and SU(1,1) algebraic structure models, which are applied to one-body system and many-body systems, such as the single spin model, the single-mode squeeze harmonic oscillator model and the BCS model. In terms of the double-time Green-function method, our general conclusions are illustrated with two models which exhibit the fidelity susceptibilities at the finite temperature and T = 0.
引用
收藏
页数:4
相关论文
共 20 条
[1]   Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction [J].
Chen, Shu ;
Wang, Li ;
Gu, Shi-Jian ;
Wang, Yupeng .
PHYSICAL REVIEW E, 2007, 76 (06)
[2]   Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition [J].
Chen, Shu ;
Wang, Li ;
Hao, Yajiang ;
Wang, Yupeng .
PHYSICAL REVIEW A, 2008, 77 (03)
[3]   Dynamics of Loschmidt echoes and fidelity decay [J].
Gorin, Thomas ;
Prosen, Tomaz ;
Seligman, Thomas H. ;
Znidaric, Marko .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 435 (2-5) :33-156
[4]  
GU SJ, QUANTPH08113127V1
[5]   Fidelity and information in the quantum teleportation of continuous variables [J].
Hofmann, HF ;
Ide, T ;
Kobayashi, T ;
Furusawa, A .
PHYSICAL REVIEW A, 2000, 62 (06) :062304-062301
[6]   Ground-state fidelity in the BCS-BEC crossover [J].
Khan, Ayan ;
Pieri, Pierbiagio .
PHYSICAL REVIEW A, 2009, 80 (01)
[7]   Fidelities for transformations of unknown quantum states [J].
Madsen, LB ;
Molmer, K .
PHYSICAL REVIEW A, 2006, 73 (03)
[8]  
NILESEN MA, 2000, QUANTUM COMPUTATION
[9]   Scaling of entanglement close to a quantum phase transition [J].
Osterloh, A ;
Amico, L ;
Falci, G ;
Fazio, R .
NATURE, 2002, 416 (6881) :608-610
[10]   Fidelity between partial states as a signature of quantum phase transitions [J].
Paunkovic, N. ;
Sacramento, P. D. ;
Nogueira, P. ;
Vieira, V. R. ;
Dugaev, V. K. .
PHYSICAL REVIEW A, 2008, 77 (05)