On the Commuting Graph of Dihedral Group

被引:38
作者
Ali, Faisal [1 ]
Salman, Muhammad [1 ]
Huang, Shuliang [2 ]
机构
[1] Bahauddin Zakariya Univ Multan, Ctr Adv Studies Pure & Appl Math, Multan, Pakistan
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Peoples R China
关键词
Commuting graph; Dihedral group; Distant and detour distant properties; Metric dimension; Resolving polynomial; COMMUTATIVE RING; RESOLVABILITY; DIMENSION;
D O I
10.1080/00927872.2015.1053488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a non-abelian group and . We define the commuting graph G = ?(, ) with vertex set and two distinct elements of are joined by an edge when they commute in . In this article, among some properties of commuting graphs, we investigate distant properties as well as detour distant properties of commuting graph on D-2n. We also study the metric dimension of commuting graph on D-2n and compute its resolving polynomial.
引用
收藏
页码:2389 / 2401
页数:13
相关论文
共 17 条
[1]   Commuting graphs of full matrix rings over finite fields [J].
Abdollahi, Alireza .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2947-2954
[2]   The total graph of a commutative ring [J].
Anderson, David F. ;
Badawi, Ayman .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2706-2719
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]  
[Anonymous], 1991, LONDON MATH SOC STUD
[5]   The connectivity of commuting graphs [J].
Bundy, D. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) :995-1007
[6]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[7]  
Chartrand G., 2006, Itroduction to graph theory
[8]  
Chaudhry MA, 2010, UTILITAS MATHEMATICA, V83, P187
[9]  
Chelvam TT, 2011, J MATH COMPUT SCI-JM, V2, P402
[10]  
Dolan D, 2011, LINEAR ALGEBRA APPL, V435, P1657