Alternating quiver Hecke algebras

被引:0
作者
Boys, Clinton [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
关键词
Alternating groups; Alternating Hecke algebras; Khovanov-Lauda-Rouquier algebras; Representation theory;
D O I
10.1016/j.jalgebra.2015.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For simply-laced, reversible quivers, we consider the fixed-point subalgebra of the quiver Hecke algebra under the homogeneous sign map. This leads to a new family of algebras we call alternating quiver Hecke algebras. We give a basis theorem and a presentation by generators and relations which is strikingly similar to the KLR presentation for quiver Hecke algebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 263
页数:18
相关论文
共 15 条
[1]  
Boys C., 2015, ALGEBR REPR IN PRESS
[2]  
Boys C., PREPRINT
[3]  
Boys C., 2014, THESIS U SYDNEY
[4]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[5]   Representations induced in an invariant subgroup [J].
Clifford, AH .
ANNALS OF MATHEMATICS, 1937, 38 :533-550
[6]  
Curtis Ch, 1962, Representation Theory of Finite Groups and Associative Algebras
[7]  
Curtis CW., 1981, METHODS REPRESENTATI
[8]  
James GD, 1978, Lecture Notes in Mathematics, V682
[9]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[10]  
Khovanov M., 2009, Representation Theory, V13, P309