The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy

被引:443
作者
Velasco-Velez, Juan-Jesus [1 ]
Wu, Cheng Hao [1 ,2 ]
Pascal, Tod A. [3 ]
Wan, Liwen F. [3 ]
Guo, Jinghua [4 ,5 ]
Prendergast, David [3 ]
Salmeron, Miquel [1 ,6 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[6] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
FREQUENCY VIBRATIONAL SPECTROSCOPY; AU(111) SURFACE; MOLECULES; ADSORPTION; RU(0001); FORCE; LAYER;
D O I
10.1126/science.1259437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular structure of the electrical double layer determines the chemistry in all electrochemical processes. Using x-ray absorption spectroscopy (XAS), we probed the structure of water near gold electrodes and its bias dependence. Electron yield XAS detected at the gold electrode revealed that the interfacial water molecules have a different structure from those in the bulk. First principles calculations revealed that similar to 50% of the molecules lie flat on the surface with saturated hydrogen bonds and another substantial fraction with broken hydrogen bonds that do not contribute to the XAS spectrum because their core-excited states are delocalized by coupling with the gold substrate. At negative bias, the population of flat-lying molecules with broken hydrogen bonds increases, producing a spectrum similar to that of bulk water.
引用
收藏
页码:831 / 834
页数:4
相关论文
共 34 条
[1]   Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J].
Ataka, K ;
Yotsuyanagi, T ;
Osawa, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10664-10672
[2]  
Bard A.J, 2002, Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, V2e
[3]  
Bergmann U, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.092107
[4]   The premelting of ice studied with photoelectron spectroscopy [J].
Bluhm, H ;
Ogletree, DF ;
Fadley, CS ;
Hussain, Z ;
Salmeron, N .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (08) :L227-L233
[5]   Direct Observation of Two Electron Holes in a Hematite Photoanode during Photoelectrochemical Water Splitting [J].
Braun, Artur ;
Sivula, Kevin ;
Bora, Debajeet K. ;
Zhu, Junfa ;
Zhang, Liang ;
Graetzel, Michael ;
Guo, Jinghua ;
Constable, Edwin C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (32) :16870-16875
[6]  
Brown MA, 2009, ANNU REP PROG CHEM C, V105, P174, DOI 10.1039/b803023p
[7]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647
[8]   Anomalous Wetting Layer at the Au(111) Surface [J].
Cicero, G. ;
Calzolari, A. ;
Corni, S. ;
Catellani, A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (20) :2582-2586
[9]   Water confined in nanotubes and between graphene sheets: A first principle study [J].
Cicero, Giancarlo ;
Grossman, Jeffrey C. ;
Schwegler, Eric ;
Gygi, Francois ;
Galli, Giulia .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (06) :1871-1878
[10]   Probing Adsorption Interactions in Metal-Organic Frameworks using X-ray Spectroscopy [J].
Drisdell, Walter S. ;
Poloni, Roberta ;
McDonald, Thomas M. ;
Long, Jeffrey R. ;
Smit, Berend ;
Neaton, Jeffrey B. ;
Prendergast, David ;
Kortright, Jeffrey B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (48) :18183-18190