Online Parameter Identification for State of Power Prediction of Lithium-ion Batteries in Electric Vehicles Using Extremum Seeking

被引:70
作者
Wei, Chun [1 ]
Benosman, Mouhacine [2 ]
Kim, Taesic [3 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Zhejiang, Peoples R China
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[3] Texas A&M Univ Kingsville, Dept Elect Engn & Comp Sci, Kingsville, TX 78363 USA
基金
中国国家自然科学基金;
关键词
Battery management system; extremum seeking; lithium-ion battery; parameter identification; state of power; NEURAL-NETWORK; MANAGEMENT-SYSTEMS; CHARGE ESTIMATION; KALMAN FILTER; PART; MODEL; ALGORITHM; PACKS;
D O I
10.1007/s12555-018-0506-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate state-of-power (SOP) estimation is critical for building battery systems with optimized performance and longer life in electric vehicles and hybrid electric vehicles. This paper proposes a novel parameter identification method and its implementation on SOP prediction for lithium-ion batteries. The extremum seeking algorithm is developed for identifying the parameters of batteries on the basis of an electrical circuit model incorporating hysteresis effect. A rigorous convergence proof of the estimation algorithm is provided. In addition, based on the electrical circuit model with the identified parameters, a battery SOP prediction algorithm is derived, which considers both the voltage and current limitations of the battery. Simulation results for lithium-ion batteries based on real test data from urban dynamometer driving schedule (UDDS) are provided to validate the proposed parameter identification and SOP prediction methods. The proposed method is suitable for real operation of embedded battery management system due to its low complexity and numerical stability.
引用
收藏
页码:2906 / 2916
页数:11
相关论文
共 33 条
[1]  
Benosman M, 2016, LEARNING-BASED ADAPTIVE CONTROL: AN EXTREMUM SEEKING APPROACH - THEORY AND APPLICATIONS, P1
[2]   Multi-parametric extremum seeking-based iterative feedback gains tuning for nonlinear control [J].
Benosman, Mouhacine .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (18) :4035-4055
[3]   Extremum seeking-based adaptive control for electromagnetic actuators [J].
Benosman, Mouhacine ;
Atinc, Goekhan M. .
INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (03) :517-530
[4]  
Cao JB, 2009, INT J CONTROL AUTOM, V7, P409, DOI [10.1007/S12555-009-0310-9, 10.1007/s12555-009-0310-9]
[5]   Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles [J].
Chen, Xiaopeng ;
Shen, Weixiang ;
Dai, Mingxiang ;
Cao, Zhenwei ;
Jin, Jiong ;
Kapoor, Ajay .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (04) :1936-1947
[6]   State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering [J].
Chen, Zheng ;
Fu, Yuhong ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (03) :1020-1030
[7]   Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models [J].
de Jesus Rubio, Jose ;
Lughofer, Edwin ;
Meda-Campana, Jesus A. ;
Alberto Paramo, Luis ;
Francisco Novoa, Juan ;
Pacheco, Jaime .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) :2585-2596
[8]   Stable Kalman filter and neural network for the chaotic systems identification [J].
de Jesus Rubio, Jose .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (16) :7444-7462
[9]   Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction [J].
Feng, Tianheng ;
Yang, Lin ;
Zhao, Xiaowei ;
Zhang, Huidong ;
Qiang, Jiaxi .
JOURNAL OF POWER SOURCES, 2015, 281 :192-203
[10]   Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li-S case studies [J].
Fotouhi, Abbas ;
Auger, Daniel J. ;
Propp, Karsten ;
Longo, Stefano .
IET POWER ELECTRONICS, 2017, 10 (11) :1289-1297