An accurate closed-form expression for the partition function of Morse oscillators

被引:82
|
作者
Strekalov, M. L. [1 ]
机构
[1] Russian Acad Sci, Inst Chem Kinet & Combust, Siberian Branch, Novosibirsk 630090, Russia
关键词
D O I
10.1016/j.cplett.2007.03.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of the Poisson summation formula, an explicit expression is proposed to evaluate the vibrational partition function for a mode with either negative or positive anharmonicity. This formula gives numerical values almost identical to exact values over the entire temperature range from zero to infinity. The developed approximation will also be available in numerical calculations of the whole vibrational partition function for polyatomic molecules. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 212
页数:4
相关论文
共 50 条
  • [1] An accurate closed-form expression for the rovibrational partition function of diatomic molecules
    Strekalov, Mikhail L.
    CHEMICAL PHYSICS LETTERS, 2021, 764
  • [2] ACCURATE CLOSED-FORM APPROXIMATIONS TO PARTITION-FUNCTIONS
    FERNANDEZ, FM
    PINEIRO, AL
    JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (06): : 4721 - 4722
  • [3] New closed-form bounds on the partition function
    Krishnamurthy, Dvijotham
    Chakrabarti, Soumen
    Chaudhuri, Subhasis
    MACHINE LEARNING, 2008, 72 (03) : 205 - 229
  • [4] New closed-form bounds on the partition function
    Dvijotham Krishnamurthy
    Soumen Chakrabarti
    Subhasis Chaudhuri
    Machine Learning, 2008, 72 : 205 - 229
  • [5] On the partition function of Morse oscillators
    Strekalov, ML
    CHEMICAL PHYSICS LETTERS, 2004, 393 (1-3) : 192 - 196
  • [6] Approximating the Partition Function of Morse Oscillators
    Cotaescu, Ion I.
    Pop, Nicolina
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (06) : 1596 - 1602
  • [7] Approximating the Partition Function of Morse Oscillators
    Ion I. Cotăescu
    Nicolina Pop
    International Journal of Theoretical Physics, 2009, 48 : 1596 - 1602
  • [8] Closed-form solutions for oscillators with inelastic impacts
    Pilipchuk, V. N.
    JOURNAL OF SOUND AND VIBRATION, 2015, 359 : 154 - 167
  • [9] An accurate closed-form approximate representation for the Hankel function of the second kind
    Gardner, J
    Collin, RE
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (10) : 1699 - 1700
  • [10] Closed-form expression of frequency pulling in unlocked-driven nonlinear oscillators
    Maffezzoni, Paolo
    Codecasa, Lorenzo
    D'Amore, Dario
    Santomauro, Mauro
    2007 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1-3, 2007, : 914 - 917