Concerning eight mutually orthogonal Latin squares

被引:7
作者
Abel, R. Julian R. [1 ]
Cavenagh, Nicholas [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
MOLS; difference matrix; transversal design;
D O I
10.1002/jcd.20121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we provide a direct construction for 8 mutually orthogonal latin squares (MOLS)(48). Using this design together with one of Wilson's recursive constructions produces 8 new MOLS(v) for 88 other values of v. We also mention a few other new sets of 8 and 12 MOLS obtained recursively. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 16 条
[1]   Balanced incomplete block designs with block size 9: part II [J].
Abel, RJR ;
Bluskov, I ;
Greig, M .
DISCRETE MATHEMATICS, 2004, 279 (1-3) :5-32
[2]   Concerning seven and eight Mutually Orthogonal Latin Squares [J].
Abel, RJR ;
Colbourn, CJ ;
Wojtas, M .
JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (02) :123-131
[3]  
ABEL RJR, VECTORS DESIGNS DIFF
[4]  
ABEL RJR, 1996, CRC DISCR MATH APPL, P142
[5]  
Abel RJR., 1996, C.R.C. Handbook of Combinatorial Designs, P111
[6]  
[Anonymous], 1974, DISCRETE MATH
[7]  
Bose RC., 1960, Can. J. Math, V12, P189, DOI [10.4153/CJM-1960-016-5, DOI 10.4153/CJM-1960-016-5]
[8]   MORE MUTUALLY ORTHOGONAL LATIN SQUARES [J].
BROUWER, AE ;
VANREES, GHJ .
DISCRETE MATHEMATICS, 1982, 39 (03) :263-281
[9]  
Colbourn C. J., 1995, Designs, Codes and Cryptography, V5, P189, DOI 10.1007/BF01388383
[10]  
Colbourn C.J., 1996, COMPUTATIONAL CONSTR, V368, P67, DOI [DOI 10.1007/978-1-4757-2497-4, 10.1007/978-1-4757-2497-4]