Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales

被引:8
作者
Rezk, Haytham M. [1 ]
AlNemer, Ghada [2 ]
Saied, Ahmed, I [3 ]
Bazighifan, Omar [4 ]
Zakarya, Mohammed [5 ,6 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Benha Univ, Fac Sci, Dept Math, Banha 13518, Egypt
[4] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[5] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[6] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
reverse Hilbert-type inequalities; Specht's ratio; time scales; reverse Holder inequalities;
D O I
10.3390/sym14040750
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This manuscript develops the study of reverse Hilbert-type inequalities by applying reverse Holder inequalities on T. We generalize the reverse inequality of Hilbert-type with power two by replacing the power with a new power beta, beta > 1. The main results are proved by using Specht's ratio, chain rule and Jensen's inequality. Our results (when T = N) are essentially new. Symmetrical properties play an essential role in determining the correct methods to solve inequalities.
引用
收藏
页数:24
相关论文
共 50 条
[41]   Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales [J].
Gu, Juan ;
Meng, Fanwei .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 :235-242
[42]   On a new class of dynamic Hardy-type inequalities and some related generalizations [J].
Saker, S. H. ;
Osman, M. M. ;
Anderson, Douglas R. .
AEQUATIONES MATHEMATICAE, 2022, 96 (04) :773-793
[43]   On a new class of dynamic Hardy-type inequalities and some related generalizations [J].
S. H. Saker ;
M. M. Osman ;
Douglas R. Anderson .
Aequationes mathematicae, 2022, 96 :773-793
[44]   Some Generalizations of Novel (Δ backward difference )Δ-Gronwall-Pachpatte Dynamic Inequalities on Time Scales with Applications [J].
El-Deeb, Ahmed A. ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2022, 14 (09)
[45]   Some integral inequalities on time scales [J].
Adnan Tuna ;
Servet Kutukcu .
Applied Mathematics and Mechanics(English Edition), 2008, (01) :23-29
[46]   Some integral inequalities on time scales [J].
Adnan Tuna ;
Servet Kutukcu .
Applied Mathematics and Mechanics, 2008, 29 :23-29
[47]   Some integral inequalities on time scales [J].
Tuna, Adnan ;
Kutukcu, Servet .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (01) :23-29
[48]   Some fractional dynamic inequalities on time scales of Hardy's type [J].
Sayed, A. G. ;
Saker, S. H. ;
Ahmed, A. M. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (02) :98-109
[49]   On some dynamic inequalities of Ostrowski, trapezoid, and Gruss type on time scales [J].
El-Deeb, Ahmed A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[50]   On some extensions of dynamic Hardy-type inequalities on time scales [J].
Mohamed, Karim A. ;
El-Owaidy, Hassan M. ;
El-Deeb, Ahmed A. ;
Rezk, M. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 30 (02) :150-167