Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales

被引:8
作者
Rezk, Haytham M. [1 ]
AlNemer, Ghada [2 ]
Saied, Ahmed, I [3 ]
Bazighifan, Omar [4 ]
Zakarya, Mohammed [5 ,6 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Benha Univ, Fac Sci, Dept Math, Banha 13518, Egypt
[4] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[5] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[6] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
reverse Hilbert-type inequalities; Specht's ratio; time scales; reverse Holder inequalities;
D O I
10.3390/sym14040750
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This manuscript develops the study of reverse Hilbert-type inequalities by applying reverse Holder inequalities on T. We generalize the reverse inequality of Hilbert-type with power two by replacing the power with a new power beta, beta > 1. The main results are proved by using Specht's ratio, chain rule and Jensen's inequality. Our results (when T = N) are essentially new. Symmetrical properties play an essential role in determining the correct methods to solve inequalities.
引用
收藏
页数:24
相关论文
共 50 条
[31]   Some New Ostrowski type inequalities on time scales for functions of two independent variables [J].
Meftah B. ;
Khaled B. .
Journal of Interdisciplinary Mathematics, 2017, 20 (02) :397-415
[32]   Some new Volterra-Fredholm type dynamic integral inequalities on time scales [J].
Meng, Fanwei ;
Shao, Jing .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :444-451
[33]   Some new generalized weighted dynamic inequalities of Hardy's type on time scales [J].
Saker, S. H. ;
El-sheikh, M. M. A. ;
Madian, A. M. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04) :289-301
[34]   SOME BENNETT-COPSON TYPE INEQUALITIES ON TIME SCALES [J].
Saker, S. H. ;
Mahmoud, R. R. ;
Peterson, A. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02) :471-489
[35]   Some Ostrowski Type Inequalities for Double Integrals on Time Scales [J].
Deepak B. Pachpatte .
Acta Applicandae Mathematicae, 2019, 161 :1-11
[36]   Some Ostrowski Type Inequalities for Double Integrals on Time Scales [J].
Pachpatte, Deepak B. .
ACTA APPLICANDAE MATHEMATICAE, 2019, 161 (01) :1-11
[37]   SOME WEIGHTED OPIAL-TYPE INEQUALITIES ON TIME SCALES [J].
Srivastava, H. M. ;
Tseng, Kuei-Lin ;
Tseng, Shio-Jenn ;
Lo, Jen-Chieh .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01) :107-122
[38]   New dynamic Hilbert-type inequalities in two independent variables involving Fenchel-Legendre transform [J].
El-Deeb, A. A. ;
Rashid, Saima ;
Khan, Zareen A. ;
Makharesh, S. D. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[39]   SOME DIAMOND INTEGRAL REVERSE HOLDER-TYPE INEQUALITIES ASSOCIATED WITH SPECHT'S RATIO ON TIME SCALES [J].
Liang, Jiansuo ;
Chen, Guangsheng ;
Luo, Wenting .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
[40]   BOUNDS FOR SOME NEW INTEGRAL INEQUALITIES WITH DELAY ON TIME SCALES [J].
Wang, Tonglin ;
Xu, Run .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (03) :355-366