A Gating Charge Transfer Center in Voltage Sensors

被引:388
作者
Tao, Xiao [1 ]
Lee, Alice [1 ]
Limapichat, Walrati [2 ]
Dougherty, Dennis A. [2 ]
MacKinnon, Roderick [1 ]
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, Lab Mol Neurobiol & Biophys, New York, NY 10065 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
DEPENDENT K+ CHANNEL; SHAKER POTASSIUM CHANNEL; FOCUSED ELECTRIC-FIELD; TRANSMEMBRANE MOVEMENT; WILD-TYPE; ACTIVATION; PORE; S4; DISPLACEMENT; TRANSITIONS;
D O I
10.1126/science.1185954
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic "cap" and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 30 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]   Focused electric field across the voltage sensor of potassium channels [J].
Ahern, CA ;
Horn, R .
NEURON, 2005, 48 (01) :25-29
[3]   CHARGE MOVEMENT ASSOCIATED WITH OPENING AND CLOSING OF ACTIVATION GATES OF NA CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1974, 63 (05) :533-552
[4]   Inferred motions of the S3a helix during voltage-dependent K+ channel gating [J].
Banerjee, Anirban ;
MacKinnon, Roderick .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 381 (03) :569-580
[5]   Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy [J].
Cha, A ;
Snyder, GE ;
Selvin, PR ;
Bezanilla, F .
NATURE, 1999, 402 (6763) :809-813
[6]   Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement [J].
Chanda, B ;
Asamoah, OK ;
Blunck, R ;
Roux, B ;
Bezanilla, F .
NATURE, 2005, 436 (7052) :852-856
[7]   PURIFICATION AND CHARACTERIZATION OF 3 INHIBITORS OF VOLTAGE-DEPENDENT K+ CHANNELS FROM LEIURUS-QUINQUESTRIATUS VAR HEBRAEUS VENOM [J].
GARCIA, ML ;
GARCIACALVO, M ;
HIDALGO, P ;
LEE, A ;
MACKINNON, R .
BIOCHEMISTRY, 1994, 33 (22) :6834-6839
[8]   Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel [J].
Glauner, KS ;
Mannuzzu, LM ;
Gandhi, CS ;
Isacoff, EY .
NATURE, 1999, 402 (6763) :813-817
[9]  
Hille B., 2001, Ion Channels of Excitable Membranes, V3rd
[10]   SHAKER POTASSIUM CHANNEL GATING .1. TRANSITIONS NEAR THE OPEN STATE [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1994, 103 (02) :249-278