Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells

被引:396
作者
Collins, Samuel D. [1 ]
Ran, Niva A. [1 ]
Heiber, Michael C. [1 ]
Thuc-Quyen Nguyen [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
关键词
CHARGE-TRANSFER STATE; OPEN-CIRCUIT VOLTAGE; EXCITON DIFFUSION LENGTH; REDUCED BIMOLECULAR RECOMBINATION; FULLERENE ELECTRON-ACCEPTORS; ORGANIC PHOTOVOLTAIC CELLS; NANOSCALE PHASE-SEPARATION; ACTIVE LAYER THICKNESS; A SMALL MOLECULES; HIGH FILL FACTORS;
D O I
10.1002/aenm.201602242
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the last 5 years, research on the synthesis, device engineering, and device physics of solution-processed small molecule solar cells (SMSCs) has rapidly expanded. Improvements in molecular design and emergent device processing techniques have helped solution-processed SMSCs overcome earlier difficulties in controlling active layer morphology, such that many systems are now at-or approaching-10% power conversion efficiency. In this review, details of the highest performing blend systems are presented in order to identify key trends and provide perspective on current progress in the field. Among the best systems, a planarized molecular structure is prevalent, which can be achieved using large fused-ring moieties, intermolecular non-bonding interactions, and side chain engineering. To obtain efficient devices, the highest performing systems have been optimized through the careful combination of thermal and solvent annealing procedures. Even without additional processing, some systems have been able to obtain interconnected morphologies and efficient charge generation and charge transport. Ultimately, the design of more efficient materials also requires additional understanding of the device physics and loss mechanisms. After highlighting what is known to date on processes limiting device efficiency, an outlook on the most important challenges remaining to the field is provided.
引用
收藏
页数:46
相关论文
共 394 条
[31]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[32]   How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency [J].
Burke, Timothy M. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2014, 26 (12) :1923-1928
[33]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[34]   Charge separation energetics at organic heterojunctions: on the role of structural and electrostatic disorder [J].
Castet, Frederic ;
D'Avino, Gabriele ;
Muccioli, Luca ;
Cornil, Jerome ;
Beljonne, David .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (38) :20279-20290
[35]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[36]   Morphology characterization in organic and hybrid solar cells [J].
Chen, Wei ;
Nikiforov, Maxim P. ;
Darling, Seth B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8045-8074
[37]   Green-Solvent-Processed Molecular Solar Cells [J].
Chen, Xiaofen ;
Liu, Xiaofeng ;
Burgers, Mark A. ;
Huang, Ye ;
Bazan, Guillermo C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (52) :14378-14381
[38]   High Performance Photovoltaic Applications Using Solution-Processed Small Molecules [J].
Chen, Yongsheng ;
Wan, Xiangjian ;
Long, Guankui .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) :2645-2655
[39]   In-depth understanding of photocurrent enhancement in solution-processed small-molecule:perylene diimide non-fullerene organic solar cells [J].
Chen, Yuxia ;
Zhang, Xin ;
Zhan, Chuanlang ;
Yao, Jiannian .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (09) :1961-1968
[40]   Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells [J].
Cheng, Ming ;
Chen, Cheng ;
Yang, Xichuan ;
Huang, Jing ;
Zhang, Fuguo ;
Xu, Bo ;
Sun, Licheng .
CHEMISTRY OF MATERIALS, 2015, 27 (05) :1808-1814