Data-Driven Nonparametric Li-Ion Battery Ageing Model Aiming At Learning From Real Operation Data: Holistic Validation With Ev Driving Profiles

被引:0
作者
Lucu, Mattin [1 ]
Azkue, Markel [1 ]
Camblong, Haritza [2 ]
Martinez-Laserna, Egoitz [1 ]
机构
[1] Basque Res & Technol Alliance BRTA, Energy Storage & Management Area, Ikerlan Technol Res Ctr, Arrasate Mondragon, Spain
[2] Univ Basque Country, UPV EHU, Dept Syst Engn & Control, Donostia San Sebastian, Spain
来源
2020 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE) | 2020年
关键词
Li-ion battery; Machine Learning; Data-driven model; State of Health; Remaining Useful Life; Gaussian Process Regression;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Conventional Li-ion battery ageing models require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. Furthermore, there is still an uncertainty on the validity of purely laboratory data-based ageing models for the accurate ageing prediction of battery systems deployed in field. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of in-field battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing, reduce the development cost of ageing models and at the same time ensure the validity of the model for prediction under real operating conditions. In this paper, a holistic data-driven ageing model developed under the Gaussian Process framework is validated with experimental battery ageing data. Both calendar and cycle ageing are considered, to predict the capacity loss within real EV driving scenarios. The model can learn from the driving data progressively observed, improving continuously its performances and providing more accurate and confident predictions.
引用
收藏
页码:5600 / 5607
页数:8
相关论文
共 11 条
[1]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[2]   Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems [J].
Dhundhara, Sandeep ;
Verma, Yajvender Pal ;
Williams, Arthur .
ENERGY CONVERSION AND MANAGEMENT, 2018, 177 :122-142
[3]   Adaptive and Non-Adaptive Strategies for Optimal Energy Management and Sizing of a Dual Storage System in a Hybrid Electric Bus [J].
Isaac Herrera, Victor ;
Milo, Aitor ;
Gaztanaga, Haizea ;
Ramos, Javier ;
Camblong, Haritza .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (09) :3435-3447
[4]   On state-of-charge determination for lithium-ion batteries [J].
Li, Zhe ;
Huang, Jun ;
Liaw, Bor Yann ;
Zhang, Jianbo .
JOURNAL OF POWER SOURCES, 2017, 348 :281-301
[5]   Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part A: Storage operation [J].
Lucu, M. ;
Martinez-Laserna, E. ;
Gandiaga, I ;
Liu, K. ;
Camblong, H. ;
Widanage, W. D. ;
Marco, J. .
JOURNAL OF ENERGY STORAGE, 2020, 30
[6]   Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B: Cycling operation [J].
Lucu, M. ;
Martinez-Laserna, E. ;
Gandiaga, I ;
Liu, K. ;
Camblong, H. ;
Widanage, W. D. ;
Marco, J. .
JOURNAL OF ENERGY STORAGE, 2020, 30
[7]   A critical review on self-adaptive Li-ion battery ageing models [J].
Lucu, M. ;
Martinez-Laserna, E. ;
Gandiaga, I. ;
Camblong, H. .
JOURNAL OF POWER SOURCES, 2018, 401 :85-101
[8]   Technical Viability of Battery Second Life: A Study From the Ageing Perspective [J].
Martinez-Laserna, Egoitz ;
Sarasketa-Zabala, Elixabet ;
Villarreal Sarria, Igor ;
Stroe, Daniel-Ioan ;
Swierczynski, Maciej ;
Warnecke, Alexander ;
Timmermans, Jean-Marc ;
Goutam, Shovon ;
Omar, Noshin ;
Rodriguez, Pedro .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (03) :2703-2713
[9]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[10]   Realistic lifetime prediction approach for Li-ion batteries [J].
Sarasketa-Zabala, E. ;
Martinez-Laserna, E. ;
Berecibar, M. ;
Gandiaga, I. ;
Rodriguez-Martinez, L. M. ;
Villarreal, I. .
APPLIED ENERGY, 2016, 162 :839-852