The Kernel Adaptive Autoregressive-Moving-Average Algorithm

被引:23
|
作者
Li, Kan [1 ]
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
Deterministic finite automaton (DFA); kernel adaptive filtering (KAF); recurrent neural network (RNN); reproducing kernel Hilbert space (RKHS); INDUCTIVE INFERENCE; FINITE AUTOMATA; FORMAL THEORY; TIME-SERIES; IDENTIFICATION; MACHINES; APPROXIMATION; SYSTEMS; NETWORK; MODELS;
D O I
10.1109/TNNLS.2015.2418323
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel kernel adaptive recurrent filtering algorithm based on the autoregressive-moving-average (ARMA) model, which is trained with recurrent stochastic gradient descent in the reproducing kernel Hilbert spaces. This kernelized recurrent system, the kernel adaptive ARMA (KAARMA) algorithm, brings together the theories of adaptive signal processing and recurrent neural networks (RNNs), extending the current theory of kernel adaptive filtering (KAF) using the representer theorem to include feedback. Compared with classical feedforward KAF methods, the KAARMA algorithm provides general nonlinear solutions for complex dynamical systems in a state-space representation, with a deferred teacher signal, by propagating forward the hidden states. We demonstrate its capabilities to provide exact solutions with compact structures by solving a set of benchmark nondeterministic polynomial-complete problems involving grammatical inference. Simulation results show that the KAARMA algorithm outperforms equivalent input-space recurrent architectures using first-and second-order RNNs, demonstrating its potential as an effective learning solution for the identification and synthesis of deterministic finite automata.
引用
收藏
页码:334 / 346
页数:13
相关论文
共 50 条
  • [21] Autoregressive Moving Average Modeling in the Financial Sector
    Li, Peihao
    Jing, Chaoqun
    Liang, Tian
    Liu, Mingjia
    Chen, Zhenglin
    Guo, Li
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER, AND ELECTRICAL ENGINEERING (ICITACEE), 2015, : 68 - 71
  • [22] Spatial autoregressive and moving average Hilbertian processes
    Ruiz-Medina, M. D.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (02) : 292 - 305
  • [23] The specification of vector autoregressive moving average models
    Koreisha, SG
    Pukkila, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 547 - 565
  • [24] Stationarity of generalized autoregressive moving average models
    Woodard, Dawn B.
    Matteson, David S.
    Henderson, Shane G.
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 800 - 828
  • [25] An effectiveness study of the Bayesian inference with multivariate autoregressive moving average processes
    Albassam, Mohammed
    Soliman, Emad E. A.
    Ali, Sherif S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4773 - 4788
  • [26] Affinity Coefficient for Clustering Autoregressive Moving Average Models
    Nascimento, Ana Paula
    Oliveira, Alexandra
    Faria, Brigida Monica
    Pimenta, Rui
    Vieira, Monica
    Prudencio, Cristina
    Bacelar-Nicolau, Helena
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2024, 2024
  • [27] On a partly linear autoregressive model with moving average errors
    Bianco, Ana
    Boente, Graciela
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (06) : 797 - 820
  • [28] Fast Generation of Generalized Autoregressive Moving Average Processes
    Ferdi, Youcef
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1004 - 1009
  • [29] Multiple Seasonal Autoregressive Integrated Moving Average Models
    Lisi, Francesco
    Grigoletto, Matteo
    JOURNAL OF FORECASTING, 2025,
  • [30] Beta autoregressive fractionally integrated moving average models
    Pumi, Guilherme
    Valk, Marcio
    Bisognin, Cleber
    Bayer, Fabio Mariano
    Prass, Taiane Schaedler
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 196 - 212