Hilbert matrix on Bergman spaces

被引:49
作者
Diamantopoulos, E
机构
[1] 54631 Thessaloniki
关键词
D O I
10.1215/ijm/1258131071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hilbert matrix acts on Bergman spaces by multiplication on Taylor coefficients. We find an upper bound for the norm of the induced operator.
引用
收藏
页码:1067 / 1078
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 1978, COURSE MODERN ANAL
[2]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[3]   Composition operators and the Hilbert matrix [J].
Diamantopoulos, E ;
Siskakis, AG .
STUDIA MATHEMATICA, 2000, 140 (02) :191-198
[4]  
Duren P. L., 1970, PURE APPL MATH, V38, DOI [10.1016/S0079-8169(08)62672-0, DOI 10.1016/S0079-8169(08)62672-0]
[5]  
GALANOPOULOS P, 2001, ACTA SCI MATH, V67, P411
[6]  
Hardy G.H., 1959, INEQUALITIES
[7]  
Hedenmalm H., 2000, GRAD TEXT M, V199
[8]   Best constants for the Riesz projection [J].
Hollenbeck, B ;
Verbitsky, IE .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) :370-392
[9]   Coefficient multipliers between Bergman and Hardy spaces [J].
MacGregor, T ;
Zhu, KH .
MATHEMATIKA, 1995, 42 (84) :413-426
[10]  
SISKAKIS AG, 1987, J LOND MATH SOC, V36, P153