Hilbert matrix on Bergman spaces

被引:47
作者
Diamantopoulos, E
机构
[1] 54631 Thessaloniki
关键词
D O I
10.1215/ijm/1258131071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hilbert matrix acts on Bergman spaces by multiplication on Taylor coefficients. We find an upper bound for the norm of the induced operator.
引用
收藏
页码:1067 / 1078
页数:12
相关论文
共 12 条
  • [1] [Anonymous], 1978, COURSE MODERN ANAL
  • [2] Cowen C., 1995, Composition operators on spaces of analytic functions
  • [3] Composition operators and the Hilbert matrix
    Diamantopoulos, E
    Siskakis, AG
    [J]. STUDIA MATHEMATICA, 2000, 140 (02) : 191 - 198
  • [4] Duren P. L., 1970, PURE APPL MATH, V38, DOI [10.1016/S0079-8169(08)62672-0, DOI 10.1016/S0079-8169(08)62672-0]
  • [5] GALANOPOULOS P, 2001, ACTA SCI MATH, V67, P411
  • [6] Hardy G.H., 1959, INEQUALITIES
  • [7] Hedenmalm H., 2000, GRAD TEXT M, V199
  • [8] Best constants for the Riesz projection
    Hollenbeck, B
    Verbitsky, IE
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) : 370 - 392
  • [9] Coefficient multipliers between Bergman and Hardy spaces
    MacGregor, T
    Zhu, KH
    [J]. MATHEMATIKA, 1995, 42 (84) : 413 - 426
  • [10] SISKAKIS AG, 1987, J LOND MATH SOC, V36, P153