CycleGAN-STF: Spatiotemporal Fusion via CycleGAN-Based Image Generation

被引:59
作者
Chen, Jia [1 ,2 ]
Wang, Lizhe [1 ,2 ]
Feng, Ruyi [1 ,2 ]
Liu, Peng [3 ]
Han, Wei [1 ,2 ]
Chen, Xiaodao [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst AIR, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 07期
基金
中国国家自然科学基金;
关键词
Spatiotemporal phenomena; Spatial resolution; Remote sensing; Wavelet transforms; Generative adversarial networks; Generative adversarial network (GAN); image-generation; remote sensing; spatiotemporal image-fusion; wavelet transform; MODIS SURFACE REFLECTANCE; LANDSAT; MODEL;
D O I
10.1109/TGRS.2020.3023432
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the trade-off of temporal resolution and spatial resolution, spatiotemporal image-fusion uses existing high-spatial-low-temporal (HSLT) and high-temporal-low-spatial (HTLS) images as prior knowledge to reconstruct high-temporal-high-spatial (HTHS) images. However, some existing spatiotemporal image-fusion algorithms ignore the issue that the spatial information of HTLS images is insufficient to support the acquisition of spatial information, which leads to the unsatisfactory accuracy of the fusion result. To introduce more spatial information, the algorithm in this article uses Cycle-generative adversarial networks (GANs) to simulate the change process of two HSLT images at , and to generate some simulated images between and. Then, the generated images are selected under the help of HTLS images, and the selected ones are then enhanced with wavelet transform. Finally, the image with spatial information is introduced into the Flexible Spatiotemporal DAta Fusion (FSDAF) framework to improve the performance of spatiotemporal image-fusion. Extensive experiments on two real data sets demonstrate that our proposed method outperforms current state-of-the-art spatiotemporal image-fusion methods.
引用
收藏
页码:5851 / 5865
页数:15
相关论文
共 52 条
[1]  
[Anonymous], 1987, REMOTE SENSING IMAGE
[2]  
[Anonymous], 2015, CoRR
[3]   Image fusion metric based on mutual information and Tsallis entropy [J].
Cvejic, N. ;
Canagarajah, C. N. ;
Bull, D. R. .
ELECTRONICS LETTERS, 2006, 42 (11) :626-627
[4]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[5]   Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images [J].
Dou, Minggang ;
Chen, Jingying ;
Chen, Dan ;
Chen, Xiaodao ;
Deng, Ze ;
Zhang, Xuguang ;
Xu, Kai ;
Wang, Jian .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 37 :367-377
[6]   An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model [J].
Fu, Dongjie ;
Chen, Baozhang ;
Wang, Juan ;
Zhu, Xiaolin ;
Hilker, Thomas .
REMOTE SENSING, 2013, 5 (12) :6346-6360
[7]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[8]   A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion [J].
Gevaert, Caroline M. ;
Javier Garcia-Haro, F. .
REMOTE SENSING OF ENVIRONMENT, 2015, 156 :34-44
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images [J].
Hazaymeh, Khaled ;
Hassan, Quazi K. .
JOURNAL OF APPLIED REMOTE SENSING, 2015, 9