Ptychographic X-ray computed tomography at the nanoscale

被引:690
作者
Dierolf, Martin [1 ]
Menzel, Andreas [2 ]
Thibault, Pierre [1 ]
Schneider, Philipp [3 ]
Kewish, Cameron M. [2 ]
Wepf, Roger [4 ]
Bunk, Oliver [2 ]
Pfeiffer, Franz [1 ]
机构
[1] Tech Univ Munich, Dept Phys E17, D-85748 Garching, Germany
[2] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[3] ETH, Inst Biomech, CH-8093 Zurich, Switzerland
[4] EMEZ, CH-8093 Zurich, Switzerland
关键词
DIFFRACTION MICROSCOPY; PHASE RETRIEVAL;
D O I
10.1038/nature09419
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research(1-4). Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify(5,6). Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging(7-9). As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.
引用
收藏
页码:436 / U82
页数:5
相关论文
共 30 条
[21]   Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources [J].
Pfeiffer, F ;
Weitkamp, T ;
Bunk, O ;
David, C .
NATURE PHYSICS, 2006, 2 (04) :258-261
[22]   Ptychography and related diffractive imaging methods [J].
Rodenburg, J. M. .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 150, 2008, 150 (87-184) :87-184
[23]   Hard-x-ray lensless imaging of extended objects [J].
Rodenburg, J. M. ;
Hurst, A. C. ;
Cullis, A. G. ;
Dobson, B. R. ;
Pfeiffer, F. ;
Bunk, O. ;
David, C. ;
Jefimovs, K. ;
Johnson, I. .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[24]   Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network [J].
Schneider, Philipp ;
Meier, Matias ;
Wepf, Roger ;
Mueller, Ralph .
BONE, 2010, 47 (05) :848-858
[25]   Hard x-ray nanobeam characterization by coherent diffraction microscopy [J].
Schropp, A. ;
Boye, P. ;
Feldkamp, J. M. ;
Hoppe, R. ;
Patommel, J. ;
Samberg, D. ;
Stephan, S. ;
Giewekemeyer, K. ;
Wilke, R. N. ;
Salditt, T. ;
Gulden, J. ;
Mancuso, A. P. ;
Vartanyants, I. A. ;
Weckert, E. ;
Schoeder, S. ;
Burghammer, M. ;
Schroer, C. G. .
APPLIED PHYSICS LETTERS, 2010, 96 (09)
[26]   High-resolution scanning x-ray diffraction microscopy [J].
Thibault, Pierre ;
Dierolf, Martin ;
Menzel, Andreas ;
Bunk, Oliver ;
David, Christian ;
Pfeiffer, Franz .
SCIENCE, 2008, 321 (5887) :379-382
[27]   Probe retrieval in ptychographic coherent diffractive imaging [J].
Thibault, Pierre ;
Dierolf, Martin ;
Bunk, Oliver ;
Menzel, Andreas ;
Pfeiffer, Franz .
ULTRAMICROSCOPY, 2009, 109 (04) :338-343
[28]   Ptychographic Fresnel coherent diffractive imaging [J].
Vine, D. J. ;
Williams, G. J. ;
Abbey, B. ;
Pfeifer, M. A. ;
Clark, J. N. ;
de Jonge, M. D. ;
McNulty, I. ;
Peele, A. G. ;
Nugent, K. A. .
PHYSICAL REVIEW A, 2009, 80 (06)
[29]   Phase-contrast imaging using polychromatic hard X-rays [J].
Wilkins, SW ;
Gureyev, TE ;
Gao, D ;
Pogany, A ;
Stevenson, AW .
NATURE, 1996, 384 (6607) :335-338
[30]   Energy-tunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution tomography [J].
Yin, Gung-Chian ;
Tang, Mau-Tsu ;
Song, Yen-Fang ;
Chen, Fu-Rong ;
Liang, Keng S. ;
Duewer, Frederick W. ;
Yun, Wenbing ;
Ko, Chen-Hao ;
Shieh, Han-Ping D. .
APPLIED PHYSICS LETTERS, 2006, 88 (24)