High order smoothness and asymptotic structure in banach spaces

被引:0
作者
Gonzalo, R.
Jaramillo, J. A.
Troyanski, S. L.
机构
[1] Univ Politecn Madrid, Fac Informat, Dept Matemat Aplicada, E-28660 Madrid, Spain
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Math Anal, E-28040 Madrid, Spain
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[4] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the connections between moduli of asymptotic convexity and smoothness of a Banach space, and the existence of high order differentiable bump functions or equivalent norms on the space. The existence of a high order uniformly differentiable bump function is related to an asymptotically uniformly smooth renorming of power type. On the other hand, the asymptotic uniform convexity of power type is related to the existence of high order smoothness of Nakano sequence spaces.
引用
收藏
页码:249 / 269
页数:21
相关论文
共 50 条
[41]   Near Convexity, Near Smoothness and Approximative Compactness of Half Spaces in Banach Spaces [J].
Zi Hou ZHANG ;
Yu ZHOU ;
Chun Yan LIU .
Acta Mathematica Sinica,English Series, 2016, (05) :599-606
[42]   Near convexity, near smoothness and approximative compactness of half spaces in Banach spaces [J].
Zi Hou Zhang ;
Yu Zhou ;
Chun Yan Liu .
Acta Mathematica Sinica, English Series, 2016, 32 :599-606
[43]   On the asymptotic equilibrium and asymptotic equivalence of differential equations in Banach spaces [J].
Nguyen Sinh Bay ;
Nguyen The Hoan ;
Nguyen Minh Man .
Ukrainian Mathematical Journal, 2008, 60 :716-729
[44]   ON THE ASYMPTOTIC EQUILIBRIUM AND ASYMPTOTIC EQUIVALENCE OF DIFFERENTIAL EQUATIONS IN BANACH SPACES [J].
Bay, Nguyen Sinh ;
Hoan, Nguyen The ;
Man, Nguyen Minh .
UKRAINIAN MATHEMATICAL JOURNAL, 2008, 60 (05) :716-729
[45]   Subdifferential representation of homogeneous functions and extension of smoothness in Banach spaces [J].
Yang, Fu Chun ;
Wei, Zhou ;
Wang, Dong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) :1535-1544
[46]   Smoothness in some Banach Spaces of Operators and Vector Valued Functions [J].
Jorda, Enrique ;
Maria Zarco, Ana .
JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) :515-526
[47]   RENORMING BANACH-SPACES WITH MANY PROJECTIONS AND SMOOTHNESS PROPERTIES [J].
FINET, C .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :675-679
[48]   Subdifferential representation of homogeneous functions and extension of smoothness in Banach spaces [J].
Fu Chun Yang ;
Zhou Wei ;
Dong Wang .
Acta Mathematica Sinica, English Series, 2010, 26 :1535-1544
[49]   Subdifferential Representation of Homogeneous Functions and Extension of Smoothness in Banach spaces [J].
Fu Chun YANG Zhou WEI Department of Mathematics Yunnan University Kunming P R China Dong WANG Department of Mathematics and Computer Science Fayetteville State University Fayetteville NC USA .
ActaMathematicaSinica(EnglishSeries), 2010, 26 (08) :1535-1544
[50]   Envelope functions and asymptotic structures in Banach spaces [J].
Sari, B .
STUDIA MATHEMATICA, 2004, 164 (03) :283-306