SURE BASED CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE DENOISING

被引:5
|
作者
Nguyen, Han, V [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
关键词
Hyperspectral image denoising; unsupervised deep learning; convolutional neural network; Stein's unbiased risk estimate;
D O I
10.1109/IGARSS39084.2020.9324734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the hyperspectral image (HSI) denoising problem by using Stein's unbiased risk estimate (SURE) based convolutional neural network (CNN). Conventional deep learning denoising approaches often use supervised methods that minimize a mean-squared error (MSE) by training on noisy-clean image pairs. In contrast, our proposed CNN-based denoiser is unsupervised and only makes use of noisy images. The method uses SURE, which is an unbiased estimator of the MSE, that does not require any information about the clean image. Therefore minimization of the SURE loss function can accurately estimate the clean image only from noisy observation. Experimental results on both simulated and real hyperspectral datasets show that our proposed method outperforms competitive HSI denoising methods.
引用
收藏
页码:1484 / 1487
页数:4
相关论文
共 50 条
  • [21] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [22] Deformable Convolutional Neural Networks for Hyperspectral Image Classification
    Zhu, Jian
    Fang, Leyuan
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1254 - 1258
  • [23] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [24] Morphological Convolutional Neural Networks for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Mondal, Ranjan
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8689 - 8702
  • [25] GROUP CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 639 - 643
  • [26] Quaternion convolutional neural networks for hyperspectral image classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [27] Hyperspectral Image Classification Based on Convolutional Neural Networks With Adaptive Network Structure
    Ding, Chen
    Li, Wei
    Zhang, Lei
    Tian, Chunna
    Wei, Wei
    Zhang, Yanning
    2018 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018,
  • [28] Convolutional Neural Networks Based Hyperspectral Image Classification Method with Adaptive Kernels
    Ding, Chen
    Li, Ying
    Xia, Yong
    Wei, Wei
    Zhang, Lei
    Zhang, Yanning
    REMOTE SENSING, 2017, 9 (06)
  • [29] Agricultural Hyperspectral Image Classification Based on Deep Separable Convolutional Neural Networks
    Liang, Yangyang
    Wu, Yu
    Wang, Gengke
    Zhang, Lili
    SIMULATION TOOLS AND TECHNIQUES, SIMUTOOLS 2021, 2022, 424 : 403 - 420
  • [30] Residual learning of deep convolutional neural networks for image denoising
    Shan, Chuanhui
    Guo, Xirong
    Ou, Jun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2809 - 2818