SURE BASED CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE DENOISING

被引:5
|
作者
Nguyen, Han, V [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
关键词
Hyperspectral image denoising; unsupervised deep learning; convolutional neural network; Stein's unbiased risk estimate;
D O I
10.1109/IGARSS39084.2020.9324734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the hyperspectral image (HSI) denoising problem by using Stein's unbiased risk estimate (SURE) based convolutional neural network (CNN). Conventional deep learning denoising approaches often use supervised methods that minimize a mean-squared error (MSE) by training on noisy-clean image pairs. In contrast, our proposed CNN-based denoiser is unsupervised and only makes use of noisy images. The method uses SURE, which is an unbiased estimator of the MSE, that does not require any information about the clean image. Therefore minimization of the SURE loss function can accurately estimate the clean image only from noisy observation. Experimental results on both simulated and real hyperspectral datasets show that our proposed method outperforms competitive HSI denoising methods.
引用
收藏
页码:1484 / 1487
页数:4
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising Using SURE-Based Unsupervised Convolutional Neural Networks
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3369 - 3382
  • [2] Evolving Deep Convolutional Neural Networks for Hyperspectral Image Denoising
    Liu, Yuqiao
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] Image Denoising Based on Asymmetric Convolutional Neural Networks
    Gan Jianwang
    Sha Yun
    Zhang Guoying
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [4] HYPERSPECTRAL IMAGE DENOISING VIA NONNEGATIVE MATRIX FACTORIZATION AND CONVOLUTIONAL NEURAL NETWORKS
    Lin, Baihong
    Tao, Xiaoming
    Qin, Xiaowei
    Duan, Yiping
    Lu, Jianhua
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4023 - 4026
  • [5] Hyperspectral image denoising via self-modulating convolutional neural networks
    Torun, Orhan
    Yuksel, Seniha Esen
    Erdem, Erkut
    Imamoglu, Nevrez
    Erdem, Aykut
    SIGNAL PROCESSING, 2024, 214
  • [6] Solar image denoising with convolutional neural networks
    Baso, C. J. Diaz
    Rodriguez, J. de la Cruz
    Danilovic, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 629
  • [7] Target Detection of Hyperspectral Image Based on Convolutional Neural Networks
    Liu, Xuefeng
    Wang, Congcong
    Sun, Qiaoqiao
    Fu, Min
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9255 - 9260
  • [8] CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Zhang, Yameng
    Li, Liutong
    Zhu, Mingcang
    He, Yong
    Li, Minqi
    Guo, Zhengqiang
    He, Yue
    Yu, Zhenlu
    Yang, Xiaocheng
    Liu, Xin
    Luo, Jianhua
    Yang, Taoli
    Liu, Yalan
    Li, Jiang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1828 - 1831
  • [9] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [10] Hyperspectral Image Classification with Convolutional Neural Networks
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1159 - 1162