Gradient-based multi-objective optimization with applications to waterflooding optimization

被引:38
|
作者
Liu, Xin [1 ]
Reynolds, Albert C. [1 ]
机构
[1] Univ Tulsa, Tulsa, OK 74104 USA
关键词
Multi-objective optimization; Life-cycle production optimization; Waterflooding optimization; Weighted sum algorithm; Normal boundary intersection algorithm; Robust optimization; Optimization under geological uncertainty; LONG-TERM; CONSTRAINTS; ALGORITHMS;
D O I
10.1007/s10596-015-9523-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider problems where it is desirable to maximize multiple objective functions, but it is impossible to find a single design vector (vector of optimization variables) which maximizes all objective functions. In this case, the solution of the multi-objective optimization problem is defined as the Pareto front. The defining characteristic of the Pareto front is that, given any specific point on the Pareto front, it is impossible to find another point on the Pareto front or another feasible point which yields a greater value of all objective functions. The focus of this work is on the generation of the Pareto front for bi-objective optimization problems with specific applications to waterflooding optimization. The most straightforward way to obtain the Pareto front is by application of the weighted sum method. We provide a procedure for scaling the optimization problem which makes it more straightforward to obtain points which are approximately uniformly distributed on the Pareto front when applying the weighted sum method. We also compare the performance of implementations of the weighted sum and normal boundary intersection (NBI) procedures where, with both methodologies, a gradient-based algorithm is used for optimization. The vector of objective functions maps the set of feasible design vectors onto a set Z, and it is well known that all points on the Pareto front are on the boundary of Z. The weighted sum method cannot find points which are on the concave part of the boundary of Z, whereas the NBI method can be used to find all points on the boundary of Z, even though all points on this boundary may not correspond to Pareto optimal points. We develop and implement an NBI algorithm based on the augmented Lagrange method where the maximization of the augumented Lagrangian in the inner loop of the augmented Lagrange method is accomplished by a gradient-based optimization algorithm with the necessary gradients computed by the adjoint method. Two waterflooding optimization problems are considered where we wish to optimize (maximize) two conflicting objectives. In the first, the two objectives are to maximize the life-cycle net present value (NPV) of production and to maximize the short-term NPV of production. In the second application, given an uncertain reservoir description, we wish to maximize the expected value of the NPV of life-cycle production and minimize the standard deviation of NPV over the ensemble of geological realizations.
引用
收藏
页码:677 / 693
页数:17
相关论文
共 50 条
  • [21] Multi-objective model auto-calibration and reduced parameterization: Exploiting gradient-based optimization tool for a hydrologic model
    Wang, Yan
    Brubaker, Kaye
    ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 70 : 1 - 15
  • [22] On dissipative symplectic integration with applications to gradient-based optimization
    Franca, Guilherme
    Jordan, Michael, I
    Vidal, Rene
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (04):
  • [23] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [24] COMPARING GRADIENT-FREE AND GRADIENT-BASED MULTI-OBJECTIVE OPTIMIZATION METHODOLOGIES ON THE VKI-LS89 TURBINE VANE TEST CASE
    Hottois, Romain
    Chatel, Arnaud
    Coussement, Gregory
    Verstraete, Tom
    De Bruyn, Tom
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 10D, 2022,
  • [25] Comparing Gradient-Free and Gradient-Based Multi-Objective Optimization Methodologies on the VKI-LS89 Turbine Vane Test Case
    Hottois, Romain
    Chatel, Arnaud
    Coussement, Gregory
    Debruyn, Tom
    Verstraete, Tom
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2023, 145 (03):
  • [26] On gradient based local search methods in unconstrained evolutionary multi-objective optimization
    Shukla, Pradyumn Kumar
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 96 - 110
  • [27] Grid-based multi-objective cheetah optimization for engineering applications
    Sharma, Shubhkirti
    Kumar, Vijay
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [28] SMT-based Multi-objective Optimization for Scheduling of MPSoC Applications
    Yan, Rongjie
    Cai, Anyu
    Gao, Hongyu
    Ma, Feifei
    Yan, Jun
    2019 13TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF SOFTWARE ENGINEERING (TASE 2019), 2019, : 160 - 167
  • [29] Multi-objective optimization algorithm based on artificial physics optimization
    Wang, Yan
    Zeng, Jian-Chao
    Kongzhi yu Juece/Control and Decision, 2010, 25 (07): : 1040 - 1044
  • [30] Multi-Objective Optimization Based on Brain Storm Optimization Algorithm
    Shi, Yuhui
    Xue, Jingqian
    Wu, Yali
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2013, 4 (03) : 1 - 21