A reaction-diffusion equation and its traveling wave solutions

被引:5
作者
Feng, Zhaosheng [1 ]
Chen, Goong [2 ]
Meng, Qingguo [3 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Tianjin Univ Technol & Educ, Dept Mech, Tianjin 300222, Peoples R China
关键词
Traveling waves; Fisher equation; Cole-Hopf transformation; Infinitesimal generator; Prolonged operator; Lie symmetry; ANALYTIC SOLUTIONS; FISHER EQUATION; QUALITATIVE-ANALYSIS; PAINLEVE ANALYSIS; SYSTEM;
D O I
10.1016/j.ijnonlinmec.2010.03.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present paper, we study a non-linear reaction-diffusion equation, which can be considered as a generalized Fisher equation. An exact solution and traveling wave solutions to the generalized Fisher equation are obtained by means of the Cole-Hopf transformation and the Lie symmetry method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:634 / 639
页数:6
相关论文
共 36 条
[21]   Symmetry classification and optimal systems of a non-linear wave equation [J].
Gandarias, ML ;
Torrisi, M ;
Valenti, A .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (03) :389-398
[22]   ANALYTIC SOLUTIONS OF THE FISHER EQUATION [J].
GUO, BY ;
KUO, PY ;
CHEN, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :645-650
[23]   REACTION DIFFUSION-EQUATIONS IN ONE DIMENSION - PARTICULAR SOLUTIONS AND RELAXATION [J].
HERRERA, JJE ;
MINZONI, A ;
ONDARZA, R .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 57 (3-4) :249-266
[24]  
Hydon P.E., 2000, Symmetry methods for differential equations. A beginner's guide
[25]   Exact solitary waves of the Fisher equation [J].
Kudryashov, NA .
PHYSICS LETTERS A, 2005, 342 (1-2) :99-106
[26]  
Kuramoto Y., 1984, Springer Series in Synergeticsg, P111, DOI [10.1007/978-3-642-69689-37, 10.1007/978-3-642-12601-7]
[27]  
Lawden D. F., 1989, Elliptic functions and applications
[28]  
LUTHER RL, 1906, Z ELEKTROCHEMIE ANGE, V12, P506
[29]  
Mitchell A., 1980, FINITE DIFFERENCE ME
[30]  
Murray JD., 1993, MATH BIOL, V2, DOI [10.1007/978-3-662-08542-4, DOI 10.1007/978-3-662-08542-4]