Gradient estimates for variable coefficient parabolic equations and singular perturbation problems

被引:60
作者
Caffarelli, LA
Kenig, CE
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1353/ajm.1998.0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove, via monotonicity formulas, interior and boundary gradient estimates for solutions to second order parabolic equations, in divergence form, with Dini top order coefficients. We then prove uniform Lipschitz estimates for solutions of singular perturbation problems, using the previous results, and two phase monotonicity formulas.
引用
收藏
页码:391 / 439
页数:49
相关论文
共 20 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[4]  
BECKNER W, IN PRESS CONVEXITY P
[5]  
BERESTYCKI H, 1990, LECT NOTES PURE APPL, V122, P567
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]  
Caffarelli L. A., 1987, Rev. Mat. Iberoamericana, V3, P139
[8]   FREE-BOUNDARY PROBLEM FOR THE HEAT-EQUATION ARISING IN FLAME PROPAGATION [J].
CAFFARELLI, LA ;
VAZQUEZ, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :411-441
[10]   REGULARITY THEOREMS FOR WEAK SOLUTIONS OF SOME NON-LINEAR SYSTEMS [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :833-838