Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data

被引:623
作者
Pnevmatikakis, Eftychios A. [1 ,2 ,3 ]
Soudry, Daniel [2 ,3 ]
Gao, Yuanjun [2 ,3 ]
Machado, Timothy A. [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Merel, Josh [2 ,3 ,6 ,7 ]
Pfau, David [2 ,3 ,6 ,7 ]
Reardon, Thomas [4 ,5 ,6 ,7 ,8 ]
Mu, Yu [9 ]
Lacefield, Clay [6 ,7 ]
Yang, Weijian [10 ]
Ahrens, Misha [9 ]
Bruno, Randy [6 ,7 ]
Jessell, Thomas M. [4 ,5 ,6 ,7 ,8 ]
Peterka, Darcy S. [8 ,10 ]
Yuste, Rafael [6 ,7 ,10 ]
Paninski, Liam [2 ,3 ,6 ,7 ,8 ,10 ]
机构
[1] Simons Fdn, Ctr Computat Biol, New York, NY 10010 USA
[2] Columbia Univ, Dept Stat, Ctr Theoret Neurosci, New York, NY 10027 USA
[3] Columbia Univ, Grossman Ctr Stat Mind, New York, NY 10027 USA
[4] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[5] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
[6] Columbia Univ, Dept Neurosci, New York, NY 10032 USA
[7] Columbia Univ, Kavli Inst Brain Sci, New York, NY 10032 USA
[8] Columbia Univ, Zuckerman Mind Brain Behav Inst, New York, NY 10032 USA
[9] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
[10] Columbia Univ, Neurotechnol Ctr, Dept Biol Sci, New York, NY 10027 USA
关键词
NEURONAL-ACTIVITY; INFERENCE; SCALE;
D O I
10.1016/j.neuron.2015.11.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multi-neuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 23 条
  • [1] Ahrens MB, 2013, NAT METHODS, V10, P413, DOI [10.1038/NMETH.2434, 10.1038/nmeth.2434]
  • [2] Andilla FerranDiego., 2014, ADV NEURAL INFORM PR, P64
  • [3] [Anonymous], 2013, INT C NEURAL INF PRO
  • [4] [Anonymous], 2006, Journal of the Royal Statistical Society, Series B
  • [5] Ultrasensitive fluorescent proteins for imaging neuronal activity
    Chen, Tsai-Wen
    Wardill, Trevor J.
    Sun, Yi
    Pulver, Stefan R.
    Renninger, Sabine L.
    Baohan, Amy
    Schreiter, Eric R.
    Kerr, Rex A.
    Orger, Michael B.
    Jayaraman, Vivek
    Looger, Loren L.
    Svoboda, Karel
    Kim, Douglas S.
    [J]. NATURE, 2013, 499 (7458) : 295 - +
  • [6] Three-dimensional mapping of microcircuit correlation structure
    Cotton, R. James
    Froudarakis, Emmanouil
    Storer, Patrick
    Saggau, Peter
    Tolias, Andreas S.
    [J]. FRONTIERS IN NEURAL CIRCUITS, 2013, 7
  • [7] Diego F., 2013, Advances in Neural Information Processing Systems, P818
  • [8] Freeman J, 2014, NAT METHODS, V11, P941, DOI [10.1038/NMETH.3041, 10.1038/nmeth.3041]
  • [9] Haeffele BD, 2014, PR MACH LEARN RES, V32, P2007
  • [10] SIMA: Python']Python software for analysis of dynamic fluorescence imaging data
    Kaifosh, Patrick
    Zaremba, Jeffrey D.
    Danielson, Nathan B.
    Losonczy, Attila
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8