Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions

被引:42
作者
Yokogawa, Mariko [1 ]
Tsushima, Takashi [2 ]
Noda, Nobuo N. [3 ]
Kumeta, Hiroyuki [1 ]
Enokizono, Yoshiaki [1 ]
Yamashita, Kazuo [4 ]
Standley, Daron M. [4 ,6 ]
Takeuchi, Osamu [4 ,5 ,6 ]
Akira, Shizuo [4 ,5 ]
Inagaki, Fuyuhiko [1 ]
机构
[1] Hokkaido Univ, Fac Adv Life Sci, Sapporo, Hokkaido 0010021, Japan
[2] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido 0600810, Japan
[3] Microbial Chem Res Fdn, Inst Microbial Chem, Tokyo 1410021, Japan
[4] Osaka Univ, World Premier Int Immunol Frontier Res Ctr, Osaka 5650871, Japan
[5] Osaka Univ, Microbial Dis Res Inst, Osaka 5650871, Japan
[6] Kyoto Univ, Inst Virus Res, Kyoto 6068507, Japan
基金
日本学术振兴会;
关键词
AU-RICH ELEMENT; MESSENGER-RNA; RECOGNITION; DEGRADATION; PROTEIN; ACTIVATION; BINDING; SYSTEM; SUITE;
D O I
10.1038/srep22324
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Pathogen recognition and innate immunity [J].
Akira, S ;
Uematsu, S ;
Takeuchi, O .
CELL, 2006, 124 (04) :783-801
[2]   Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large [J].
Beutler, Bruce ;
Jiang, Zhengfan ;
Georgel, Philippe ;
Crozat, Karine ;
Croker, Ben ;
Rutschmann, Sophie ;
Du, Xin ;
Hoebe, Kasper .
ANNUAL REVIEW OF IMMUNOLOGY, 2006, 24 :353-389
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[5]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[6]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501
[7]  
Guntert Peter, 2004, Methods Mol Biol, V278, P353
[8]   Specificity of RNA binding by CPEB: Requirement for RNA recognition motifs and a novel zinc finger [J].
Hake, LE ;
Mendez, R ;
Richter, JD .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :685-693
[9]   Multiple modes of RNA recognition by zinc finger proteins [J].
Hall, TMT .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (03) :367-373
[10]   Dali server: conservation mapping in 3D [J].
Holm, Liisa ;
Rosenstrom, Paivi .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W545-W549