Classifying finite simple groups with respect to the number of orbits under the action of the automorphism group

被引:10
作者
Kohl, S [1 ]
机构
[1] Univ Stuttgart, Inst Geomet & Topol, D-70550 Stuttgart, Germany
关键词
finite simple groups; automorphism groups;
D O I
10.1081/AGB-200039279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let omega(G) denote the number of orbits on the finite group G under the action of Aut(G). Using the classification of finite simple groups, we prove that for any positive integer n, there is only a finite number of (non-abelian) finite simple groups G satisfying omega(G) less than or equal to n. Then we classify all finite simple groups G such that omega(G) less than or equal to 17. The latter result was obtained by computational means, using the computer algebra system GAP.
引用
收藏
页码:4785 / 4794
页数:10
相关论文
共 10 条
[1]  
BREUER T, 2001, MANUAL GAP CHARACTER
[2]  
Carter R. W., 1993, FINITE GROUPS LIE TY
[3]   CONJUGATE CLASSES OF CHEVALLEY GROUPS OF TYPE (G2) [J].
CHANG, B .
JOURNAL OF ALGEBRA, 1968, 9 (02) :190-&
[4]  
Fleischmann P, 1996, APPL ALGEBR ENG COMM, V7, P221
[5]  
*GAP GROUP, 2002, GAP GROUPS ALGORITHM
[6]  
GORENSTEIN D, 1994, CLASSIFICATION FINIT, P40
[7]   Counting the orbits on finite simple groups under the action of the automorphism group - Suzuki groups vs. linear groups [J].
Kohl, S .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3515-3532
[8]   NUMBERS OF CONJUGACY CLASSES IN SOME FINITE CLASSICAL-GROUPS [J].
MACDONALD, IG .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (01) :23-48
[9]  
Thackray J. G., 1985, An Atlas of Finite Groups
[10]  
Yamada H., 1986, JAPAN J MATH, V12