Boosting levulinic acid hydrogenation to value-added 1,4-pentanediol using microwave-assisted gold catalysis

被引:35
作者
Bucciol, F. [1 ,2 ]
Tabasso, S. [3 ]
Grillo, G. [1 ,2 ]
Menegazzo, F. [4 ,5 ]
Signoretto, M. [4 ,5 ]
Manzoli, M. [1 ,2 ]
Cravotto, G. [1 ,2 ]
机构
[1] Univ Turin, Dept Drug Sci & Technol, Via P Giuria 9, I-10125 Turin, Italy
[2] Univ Turin, NIS Ctr Nanostruct Interfaces & Surfaces, Via P Giuria 9, I-10125 Turin, Italy
[3] Univ Turin, Dept Chem, Via P Giuria 7, I-10125 Turin, Italy
[4] Ca Foscari Univ Venice, Dept Mol Sci & Nanosyst, CATMAT Lab, Via Torino 155, I-30170 Venice, Italy
[5] INSTM Consortium RU Ve, Via Torino 155, I-30170 Venice, Italy
关键词
Hydrogenation; Levulinic acid; 1,4-Pentanediol; Microwave reactor; Gold catalyst; AQUEOUS-PHASE HYDROGENATION; GAMMA-VALEROLACTONE; PYRIDINE ADSORPTION; SURFACE-CHEMISTRY; ANALYTICAL TOOL; SUCCINIC ACID; FORMIC-ACID; LEWIS-ACID; BIOMASS; CONVERSION;
D O I
10.1016/j.jcat.2019.09.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microwave (MW) -assisted levulinic acid (LA) hydrogenation has been performed over two gold catalysts (commercial 1 wt% Au/TiO2 by AUROlite (TM) and 2.5 wt% Au/ZrO2, prepared using deposition-precipitation). MW-assisted LA hydrogenation was carried out in water and in solvent-free conditions via (i) H-transfer and (ii) molecular H-2. Au/TiO2 promoted complete LA conversion and the further reduction of the produced GVL to 1,4-pentanediol (1,4-PDO) in the presence of 50 bar H-2 at 150 degrees C (4-hour reaction). Interestingly, selectivity to 1,4-PDO was complete at 200 degrees C. Extended characterisation highlighted the cooperative role played by the gold nanoparticles and the support, onto which activated hydrogen atoms spillover to react with LA. This results in the remarkable activity of Au/TiO2. Both catalysts showed structural and morphological stability under reaction conditions. It was possible to reactivate the Au/TiO2 catalyst by MW-assisted oxidation, paving the way for catalyst recycling directly inside the MW reactor. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 75 条
  • [1] Al-Shaal M.G., 2016, Catalysis Communications, V75, P65, DOI [10.1016/j.catcom.2015.12.001, DOI 10.1016/j.catcom.2015.12.001]
  • [2] Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis
    Al-Shaal, Mohammad G.
    Dzierbinski, Adam
    Palkovits, Regina
    [J]. GREEN CHEMISTRY, 2014, 16 (03) : 1358 - 1364
  • [3] Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions
    Al-Shaal, Mohammad G.
    Wright, William R. H.
    Palkovits, Regina
    [J]. GREEN CHEMISTRY, 2012, 14 (05) : 1260 - 1263
  • [4] Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
    Alonso, David Martin
    Wettstein, Stephanie G.
    Dumesic, James A.
    [J]. GREEN CHEMISTRY, 2013, 15 (03) : 584 - 595
  • [5] [Anonymous], 2010, ANGEW CHEM, DOI DOI 10.1002/ANGE.201000655
  • [6] Furfuraldehyde Hydrogenation on Titanium Oxide-Supported Platinum Nanoparticles Studied by Sum Frequency Generation Vibrational Spectroscopy: Acid-Base Catalysis Explains the Molecular Origin of Strong Metal-Support Interactions
    Baker, L. Robert
    Kennedy, Griffin
    Van Spronsen, Matthijs
    Hervier, Antoine
    Cai, Xiaojun
    Chen, Shiyou
    Wang, Lin-Wang
    Somorjai, Gabor A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (34) : 14208 - 14216
  • [7] Hydrogenation of biomass-derived levulinic acid to γ-valerolactone over copper catalysts supported on ZrO2
    Balla, Putrakumar
    Perupogu, Vijayanand
    Vanama, Pavan Kumar
    Komandur, V. R. Chary
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (03) : 769 - 776
  • [8] Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals
    Bermudez, Jose M.
    Menendez, J. Angel
    Romero, Antonio A.
    Serrano, Elena
    Garcia-Martinez, Javier
    Luque, Rafael
    [J]. GREEN CHEMISTRY, 2013, 15 (10) : 2786 - 2792
  • [9] Au/TiO2 nanosized samples:: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation
    Boccuzzi, F
    Chiorino, A
    Manzoli, M
    Lu, P
    Akita, T
    Ichikawa, S
    Haruta, M
    [J]. JOURNAL OF CATALYSIS, 2001, 202 (02) : 256 - 267
  • [10] Boehm H.P., 1983, Catal. Sci. Technol, V4, P40