Characterizing diophantine henselian valuation rings and valuation ideals

被引:2
作者
Anscombe, Sylvy [1 ]
Fehm, Arno [2 ]
机构
[1] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England
[2] Tech Univ Dresden, Inst Algebra, Fachrichtung Math, D-01062 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
03C60; 11D88; 11U09; 12J10; 14G05 (primary); 14G20 (secondary); FIELDS; DEFINABILITY; SUBSETS;
D O I
10.1112/plms.12042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization, in terms of the residue field, of those henselian valuation rings and those henselian valuation ideals that are diophantine. This characterization gives a common generalization of all the positive and negative results on diophantine henselian valuation rings and diophantine valuation ideals in the literature. We also treat questions of uniformity and we apply the results to show that a given field can carry at most one diophantine nontrivial equicharacteristic henselian valuation ring or valuation ideal.
引用
收藏
页码:293 / 322
页数:30
相关论文
共 36 条
[11]   The complementary powers of the n-th in a field of numbers is a diophantine set [J].
Colliot-Thelene, Jean-Louis ;
Van Geel, Jan .
COMPOSITIO MATHEMATICA, 2015, 151 (10) :1965-1980
[12]   DIOPHANTINE PROBLEM FOR POLYNOMIAL RINGS AND FIELDS OF RATIONAL FUNCTIONS [J].
DENEF, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 242 (AUG) :391-399
[13]  
Engler A.J., 2005, SPRINGER MG MATH
[14]   Uniform definability of henselian valuation rings in the Macintyre language [J].
Fehm, Arno ;
Prestel, Alexander .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 :693-703
[15]   EXISTENTIAL empty set-DEFINABILITY OF HENSELIAN VALUATION RINGS [J].
Fehm, Arno .
JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (01) :301-307
[16]   Elementary geometric local-global principles for fields [J].
Fehm, Arno .
ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (10) :989-1008
[17]   Subfields of ample fields. Rational maps and definability [J].
Fehm, Arno .
JOURNAL OF ALGEBRA, 2010, 323 (06) :1738-1744
[18]  
Fried MD, 2008, ERGEB MATH GRENZGEB, V11, P1
[19]  
Hardy G.H., 2008, An Introduction to the Theory of Numbers, VSixth