Characterizing diophantine henselian valuation rings and valuation ideals

被引:2
作者
Anscombe, Sylvy [1 ]
Fehm, Arno [2 ]
机构
[1] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England
[2] Tech Univ Dresden, Inst Algebra, Fachrichtung Math, D-01062 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
03C60; 11D88; 11U09; 12J10; 14G05 (primary); 14G20 (secondary); FIELDS; DEFINABILITY; SUBSETS;
D O I
10.1112/plms.12042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization, in terms of the residue field, of those henselian valuation rings and those henselian valuation ideals that are diophantine. This characterization gives a common generalization of all the positive and negative results on diophantine henselian valuation rings and diophantine valuation ideals in the literature. We also treat questions of uniformity and we apply the results to show that a given field can carry at most one diophantine nontrivial equicharacteristic henselian valuation ring or valuation ideal.
引用
收藏
页码:293 / 322
页数:30
相关论文
共 36 条
  • [1] Anscombe S., 2017, RESIDUE FIELDS UNPUB
  • [2] Anscombe S., 2017, EXISTENTIALLY UNPUB
  • [3] The existential theory of equicharacteristic henselian valued fields
    Anscombe, Sylvy
    Fehm, Arno
    [J]. ALGEBRA & NUMBER THEORY, 2016, 10 (03) : 665 - 683
  • [4] AN EXISTENTIAL O-DEFINITION OF Fq[[t]] IN Fq((t))
    Anscombe, Will
    Koenigsmann, Jochen
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (04) : 1336 - 1343
  • [5] Ax J., 1965, Amer. J. Math., V87, P605
  • [6] Bary-Soroker L., 2013, GEOMETRIC DIFFERENTI, V27
  • [7] SUBSTRUCTURES AND UNIFORM ELIMINATION FOR P-ADIC FIELDS
    BELAIR, L
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1988, 39 (01) : 1 - 17
  • [8] Chang C.C., 1990, Model Theory
  • [9] CHATZIDAKIS Z., 1984, THESIS
  • [10] Uniformly defining valuation rings in Henselian valued fields with finite or pseudo-finite residue fields
    Cluckers, Raf
    Derakhshan, Jamshid
    Leenknegt, Eva
    Macintyre, Angus
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (12) : 1236 - 1246