Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy

被引:32
作者
Chang, Chunmei [1 ,2 ,3 ]
Shi, Xiaoshan [1 ,2 ,3 ]
Jensen, Liv E. [1 ,2 ,3 ]
Yokom, Adam L. [1 ,2 ,3 ]
Fracchiolla, Dorotea [3 ,4 ]
Martens, Sascha [3 ,4 ]
Hurley, James H. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[3] Aligning Sci Parkinsons Collaborat Res Network, Chevy Chase, MD 20185 USA
[4] Univ Vienna, Vienna BioCtr, Dept Biochem & Cell Biol, Max Perutz Labs, Dr Bohr Gasse 9, A-1030 Vienna, Austria
关键词
ULK1; COMPLEX; ATG8; BINDING; RECRUITMENT; CONJUGATION; OPTINEURIN; PROTEINS; KINASE; TBK1; PHOSPHORYLATION;
D O I
10.1126/sciadv.abg4922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Selective autophagy of damaged mitochondria, protein aggregates, and other cargoes is essential for health. Cargo initiates phagophore biogenesis, which entails the conjugation of LC3 to phosphatidylethanolamine. Current models suggest that clustered ubiquitin chains on a cargo trigger a cascade from autophagic cargo receptors through the core complexes ULK1 and class III phosphatidylinositol 3-kinase complex I, WIPI2, and the ATG7, ATG3, and ATG12ATG5-ATG16L1 machinery of LC3 lipidation. This was tested using giant unilamellar vesicles (GUVs), GST-Ub4 as a model cargo, the cargo receptors NDP52, TAX1BP1, and OPTN, and the autophagy core complexes. All three cargo receptors potently stimulated LC3 lipidation on GUVs. NDP52- and TAX1BP1-induced LC3 lipidation required all components, but not ULK1 kinase activity. However, OPTN bypassed the ULK1 requirement. Thus, cargo-dependent stimulation of LC3 lipidation is common to multiple autophagic cargo receptors, yet the details of core complex engagement vary between the different receptors.
引用
收藏
页数:13
相关论文
共 61 条
[31]   Diverse Cellular Roles of Autophagy [J].
Morishita, Hideaki ;
Mizushima, Noboru .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 35, 2019, 35 :453-475
[32]   Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion [J].
Nakatogawa, Hitoshi ;
Ichimura, Yoshinobu ;
Ohsumi, Yoshinori .
CELL, 2007, 130 (01) :165-178
[33]   Mechanisms governing autophagosome biogenesis [J].
Nakatogawa, Hitoshi .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (08) :439-458
[34]   FIP200 regulates targeting of Atg16L1 to the isolation membrane [J].
Nishimura, Taki ;
Kaizuka, Takeshi ;
Cadwell, Ken ;
Sahani, Mayurbhai H. ;
Saitoh, Tatsuya ;
Akira, Shizuo ;
Virgin, Herbert W. ;
Mizushima, Noboru .
EMBO REPORTS, 2013, 14 (03) :284-291
[35]   Atg2 mediates direct lipid transfer between membranes for autophagosome formation [J].
Osawa, Takuo ;
Kotani, Tetsuya ;
Kawaoka, Tatsuya ;
Hirata, Eri ;
Suzuki, Kuninori ;
Nakatogawa, Hitoshi ;
Ohsumi, Yoshinori ;
Noda, Nobuo N. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (04) :281-+
[36]   LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy [J].
Padman, Benjamin Scott ;
Thanh Ngoc Nguyen ;
Uoselis, Louise ;
Skulsuppaisarn, Marvin ;
Nguyen, Lan K. ;
Lazarou, Michael .
NATURE COMMUNICATIONS, 2019, 10 (1)
[37]   The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 [J].
Park, Ji-Man ;
Jung, Chang Hwa ;
Seo, Minchul ;
Otto, Neil Michael ;
Grunwald, Douglas ;
Kim, Kwan Hyun ;
Moriarity, Branden ;
Kim, Young-Mi ;
Starker, Colby ;
Nho, Richard Seonghun ;
Voytas, Daniel ;
Kim, Do-Hyung .
AUTOPHAGY, 2016, 12 (03) :547-564
[38]   The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease [J].
Pickrell, Alicia M. ;
Youle, Richard J. .
NEURON, 2015, 85 (02) :257-273
[39]   The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria [J].
Ravenhill, Benjamin J. ;
Boyle, Keith B. ;
von Muhlinen, Natalia ;
Ellison, Cara J. ;
Masson, Glenn R. ;
Otten, Elsje G. ;
Foeglein, Agnes ;
Williams, Roger ;
Randow, Felix .
MOLECULAR CELL, 2019, 74 (02) :320-+
[40]  
Reggiori Fulvio, 2012, Int J Cell Biol, V2012, P219625, DOI 10.1155/2012/219625