A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems

被引:30
作者
Jahanshahi, Salman [1 ]
Torres, Delfim F. M. [2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
关键词
Fractional integrals; Fractional derivatives; Ritz's method; Fractional variational problems; Fractional optimal control; DERIVATIVES; MECHANICS; CALCULUS; EQUATION;
D O I
10.1007/s10957-016-0884-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop a simple and accurate method to solve fractional variational and fractional optimal control problems with dependence on Caputo and Riemann-Liouville operators. Using known formulas for computing fractional derivatives of polynomials, we rewrite the fractional functional dynamical optimization problem as a classical static optimization problem. The method for classical optimal control problems is called Ritz's method. Examples show that the proposed approach is more accurate than recent methods available in the literature.
引用
收藏
页码:156 / 175
页数:20
相关论文
共 30 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[3]  
Almeida R., 2015, Computational methods in the fractional calculus of variations
[4]   A discrete method to solve fractional optimal control problems [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
NONLINEAR DYNAMICS, 2015, 80 (04) :1811-1816
[5]   A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution [J].
Almeida, Ricardo ;
Khosravian-Arab, Hassan ;
Shamsi, Mostafa .
JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (14) :2177-2186
[6]   Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1490-1500
[7]   Leitmann's direct method for fractional optimization problems [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :956-962
[8]  
[Anonymous], 2011, LECT NOTES ELECT ENG
[9]  
[Anonymous], 2006, Journal of the Electrochemical Society
[10]  
[Anonymous], 2008, FRACT CALC APPL ANAL